El Ghani, Najoua; Masmoudi, Nader Diffusion limit of the Vlasov-Poisson-Fokker-Planck system. (English) Zbl 1193.35228 Commun. Math. Sci. 8, No. 2, 463-479 (2010). Summary: We study the diffusion limit of the Vlasov-Poisson-Fokker-Planck System. Here, we generalize the local in time results and the two dimensional results of Poupaud-Soler and of Goudon to the case of several space dimensions. Renormalization techniques, the method of moments and a velocity averaging lemma are used to prove the convergence of free energy solutions (renormalized solutions) to the Vlasov-Poisson-Fokker- Planck system towards a global weak solution of the Drift-Diffusion-Poisson model. Cited in 1 ReviewCited in 27 Documents MSC: 35Q83 Vlasov equations 35B40 Asymptotic behavior of solutions to PDEs 35B25 Singular perturbations in context of PDEs 45K05 Integro-partial differential equations Keywords:hydrodynamic limit; Vlasov-Poisson-Fokker-Planck system; drift-diffusion-Poisson model; moment method; velocity averaging Lemma; renormalized solutions × Cite Format Result Cite Review PDF Full Text: DOI Euclid