zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability of a max-type difference equation. (English) Zbl 1193.39009
A global stability result is proved for a difference equation of max-type. The result improves the main theorem from a recent paper of the author.

39A30Stability theory (difference equations)
39A20Generalized difference equations
Full Text: DOI
[1] Berenhaut, K.; Foley, J.; Stević, S.: Boundedness character of positive solutions of a MAX difference equation, J. differ. Equat. appl. 12, No. 12, 1193-1199 (2006) · Zbl 1116.39001 · doi:10.1080/10236190600949766
[2] &ccedil, C.; Inar; Stević, S.; Yalçinkaya, I.: On positive solutions of a reciprocal difference equation with minimum, J. appl. Math. comput. 17, No. 1 -- 2, 307-314 (2005)
[3] Elsayed, E. M.; Stević, S.: On the MAX-type equation xn+1=maxAxn,xn-2, Nonlinear anal. TMA 71, 910-922 (2009) · Zbl 1169.39003
[4] Stević, S.: Behavior of the positive solutions of the generalized beddington -- Holt equation, Panamer. math. J. 10, No. 4, 77-85 (2000) · Zbl 1039.39005
[5] S. Stević, Some open problems and conjectures on difference equations, %3chttp://www.mi.sanu.ac.yu/colloquiums/mathcoll_programs/mathcoll.apr2004.htm%3e.
[6] S. Stević, Boundedness character of a max-type difference equation, in: Conference in Honour of Allan Peterson, Book of Abstracts, Novacella, Italy, July 26 -- August 02, 2007, p. 28.
[7] Stević, S.: On the recursive sequence xn+1=A+xnp/xn-1r, Discrete dyn. Nat. soc. 2007, 9 (2007) · Zbl 1151.39011 · doi:10.1155/2007/40963
[8] S. Stević, On behavior of a class of difference equations with maximum, Mathematical Models in Engineering, Biology and Medicine. Conference on Boundary Value Problems. Book of Abstracts, Santiago de Compostela, Spain, September 16 -- 19, 2008, p. 35.
[9] Stević, S.: On the recursive sequence $xn+1=max{c,xnp/xn-1p}$, Appl. math. Lett. 21, No. 8, 791-796 (2008) · Zbl 1152.39012
[10] Stević, S.: Boundedness character of a class of difference equations, Nonlinear anal. TMA 70, 839-848 (2009) · Zbl 1162.39011 · doi:10.1016/j.na.2008.01.014
[11] Stević, S.: Global stability of a difference equation with maximum, Appl. math. Comput. 210, 525-529 (2009) · Zbl 1167.39007 · doi:10.1016/j.amc.2009.01.050
[12] Sun, F.: On the asymptotic behavior of a difference equation with maximum, Discrete dyn. Nat. soc. 2008, 6 (2008) · Zbl 1155.39008 · doi:10.1155/2008/243291
[13] Yalçinkaya, I.; Iričanin, B. D.; &ccedil, C.; Inar: On a MAX-type difference equation, Discrete dyn. Nat. soc. 2007, 11 (2007)
[14] Yang, X.; Liao, X.: On a difference equation with maximum, Appl. math. Comput. 181, 1-5 (2006) · Zbl 1148.39303 · doi:10.1016/j.amc.2006.01.005