Sawano, Yoshihiro; Tanaka, Hitoshi Predual spaces of Morrey spaces with non-doubling measures. (English) Zbl 1193.42094 Tokyo J. Math. 32, No. 2, 471-486 (2009). Summary: We investigate the predual of the Morrey spaces with non-doubling measures. We also study the modified maximal function, singular integrals and commutators on the predual spaces. Cited in 23 Documents MSC: 42B35 Function spaces arising in harmonic analysis 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) Keywords:Morrey spaces; predual; maximal operators; singular integral operators × Cite Format Result Cite Review PDF Full Text: DOI References: [1] D. Adams and J. Xiao, Nonlinear Potential Analysis on Morrey Spaces and Their capacities, Indiana Univ. Math. J., 53 , (2004) No. 6, 1629-1662. · Zbl 1100.31009 · doi:10.1512/iumj.2004.53.2470 [2] D. Deng, Y. Han and D. Yang, Besov spaces with non doubling measures, Trans. Amer. Math. Soc., 358 (2006), No. 7, 2965-3001. · Zbl 1091.42017 · doi:10.1090/S0002-9947-05-03787-6 [3] D. Edmunds, V. Kokilashvili and A. Meskhi, Bounded and compact integral operators , Kluwer Academic Publishers, Dordrecht, Boston London, 2002. · Zbl 1023.42001 [4] Y. Han and D. Yang, Triebel-Lizorkin spaces for non doubling measures, Studia Math., 164 (2004) No. 2, 105-140. · Zbl 1098.42018 · doi:10.4064/sm162-2-2 [5] Y. Komori and T. Mizuhara, Factorization of functions in \(H^1(\mathbf{R}^n)\) and generalized Morrey spaces, Math. Nachr., 279 (2006), No. 5-6, 619-624. · Zbl 1129.42360 · doi:10.1002/mana.200310381 [6] F. Nazarov, S. Treil and A. Volberg, Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices (1997), No. 15, 703-726. · Zbl 0889.42013 · doi:10.1155/S1073792897000469 [7] F. Nazarov, S. Treil and A. Volberg, Weak type estimates and Cotlar inequalities for Calderön-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices (1998), No. 9, 463-487. · Zbl 0918.42009 · doi:10.1155/S1073792898000312 [8] Y. Sawano, Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas, Hokkaido Math. J., 34 (2005) 435-458. · Zbl 1088.42010 [9] Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sinica (Engl. Ser.), 21 No.6, 1535-1544. · Zbl 1129.42403 · doi:10.1007/s10114-005-0660-z [10] Y. Sawano and H. Tanaka, Sharp maximal inequalities and commutators on Morrey spaces with non-doubling measures, Taiwanese J. Math., 11 (2007), no. 4, 1091-1112. · Zbl 1213.42083 [11] X. Tolsa, BMO, \(H^1\), and Calderón-Zygmund operators for non doubling measures, Math. Ann., 319 (2001), 89-149. · Zbl 0974.42014 · doi:10.1007/s002080000144 [12] X. Tolsa, Littlewood-Paley theory and the \(T(1)\) theorem with non-doubling measures, Adv. Math., 164 (2001), 57-116. · Zbl 1015.42010 · doi:10.1006/aima.2001.2011 [13] C. Zorko, Morrey space, Proc. Amer. Math. Soc., 98 (1986), No. 4, 586-592. JSTOR: · Zbl 0612.43003 · doi:10.2307/2045731 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.