×

Whitehead products in function spaces: Quillen model formulae. (English) Zbl 1193.55005

Let \(f: X \to Y\) be a based map of based simply connected CW complexes with \(X\) a finite complex. Denote by Map\((X,Y;f)\) the path component containing \(f\) of the space of basepoint-free continuous functions from \(X\) to \(Y\), and by Map\(_*(X,Y;f)\) the corresponding component in the space of basepoint-preserving functions. In this paper the authors give a process to compute Whitehead products in the rational homotopy groups of Map\((X,Y;f)\) and Map\(_*(X,Y;f)\) in terms of the Quillen minimal model of \(f\). The computation follows from a purely algebraic development in the setting of chain complexes of differential graded Lie algebras. Several applications are given. Denote by \(Wh_Q(Z)\) the rational Whitehead length of a space \(Z\), i.e., the length of the longest non-zero Whitehead bracket in \(\pi_*(Z)\otimes\mathbb Q\). Lupton and Smith prove that
\[ Wh_Q(\text{Map}_*(X,Y;f)) \leq cl_0(X)\,, \]
where \(cl_0(X)\) denotes the rational cone length of \(X\). They also compare the Whitehead length of a space \(Y\) to the Whitehead length of Map\((X,Y;f)\). In particular they give a map \(f : S^3\to Y\) with \(Wh_Q(Y)= 1\) and \(Wh_Q(\text{Map}(S^3,Y;f))\geq 2\).. The space \(Y\) is the total space of the pullback of the path space fibration on \(K(\mathbb Z,6)\) along the map \(g : S^2\times S^3\times S^3\to K(\mathbb Z,6)\) corresponding to the fundamental class of \(S^2\times S^3\times S^3\). The map \(f: S^3\to Y\) is the injection of a factor \(S^3\).

MSC:

55P62 Rational homotopy theory
55Q15 Whitehead products and generalizations

References:

[1] I. Berstein and T. Ganea, Homotopical nilpotency, Illinois J. Math., 5 (1961), 99-130. · Zbl 0096.17602
[2] E. H. Brown, Jr. and R. H. Szczarba, Some algebraic constructions in rational homotopy theory, Topology Appl., 80 (1997), 251-258. · Zbl 0889.55005 · doi:10.1016/S0166-8641(97)00012-6
[3] U. Buijs, Y. Félix and A. Murillo, Lie models for the components of sections of nilpotent fibrations, Trans. Amer. Math. Soc., 361 (2009), 5601-5614. · Zbl 1180.55008 · doi:10.1090/S0002-9947-09-04870-3
[4] U. Buijs and A. Murillo, The rational homotopy Lie algebra of function spaces, Comment. Math. Helv., 83 (2008), 723-739. · Zbl 1169.55006 · doi:10.4171/CMH/141
[5] Y. Félix, S. Halperin and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, 205 , Springer-Verlag, New York, 2001. · Zbl 1325.55001
[6] T. Ganea, Lusternik-Schnirelmann category and cocategory, Proc. London Math. Soc. (3), 10 (1960), 623-639. · Zbl 0101.15802 · doi:10.1112/plms/s3-10.1.623
[7] P. A. Griffiths and J. W. Morgan, Rational homotopy theory and differential forms, Progress in Mathematics, 16 , Birkhäuser Boston, Mass., 1981. · Zbl 0474.55001
[8] G. Lupton, N. C. Phillips, C. S. Schochet and S. B. Smith, Banach algebras and rational homotopy theory, Trans. Amer. Math. Soc., 361 (2009), 267-295. · Zbl 1163.55006 · doi:10.1090/S0002-9947-08-04477-2
[9] G. Lupton and S. B. Smith, Criteria for components of a function space to be homotopy equivalent, Math. Proc. Camb. Philos. Soc., 145 (2008), 95-106. · Zbl 1151.55006 · doi:10.1017/S0305004108001175
[10] G. Lupton and S. B. Smith, Rationalized evaluation subgroups of a map II: Quillen models and adjoint maps, J. Pure Appl. Algebra, 209 (2007), 173-188. · Zbl 1113.55007 · doi:10.1016/j.jpaa.2006.05.019
[11] G. Lupton and S. B. Smith, Cyclic maps in rational homotopy theory, Math. Z., 249 (2005), 113-124. · Zbl 1077.55008 · doi:10.1007/s00209-004-0692-6
[12] J. Møller and M. Raussen, Rational homotopy of spaces of maps into spheres and complex projective spaces, Trans. Amer. Math. Soc., 292 (1985), 721-732. · Zbl 0605.55008 · doi:10.2307/2000242
[13] D. Quillen, Rational homotopy theory, Ann. Math., 90 (1969), 205-295. · Zbl 0191.53702 · doi:10.2307/1970725
[14] P. Salvatore, Rational homotopy nilpotency of self-equivalences, Topology Appl., 77 (1997), 37-50. · Zbl 0881.55010 · doi:10.1016/S0166-8641(96)00102-2
[15] D. Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan, Lecture Notes in Math., 1025 , Springer-Verlag, Berlin, 1983. · Zbl 0539.55001
[16] M. Vigué-Poirrier, Sur l’homotopie rationnelle des espaces fonctionnels, Manuscripta Math., 56 (1986), 177-191. · Zbl 0597.55008 · doi:10.1007/BF01172155
[17] G. W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, 61 , Springer-Verlag, New York, 1978. · Zbl 0406.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.