Proper affine actions and geodesic flows of hyperbolic surfaces. (English) Zbl 1193.57001

In this paper, \(\Gamma_0\subset \mathrm{O}(2,1)\) is a Schottky group, \(\Sigma=\mathbb{H}^2/\Gamma_0\) is the corresponding hyperbolic surface and \(\mathcal{C}(\Sigma)\) denotes the space of unit length geodesic currents on \(\Sigma\). An affine deformation of \(\Gamma_0\) is a group \(\Gamma\) of affine transformations whose linear part \(\mathbb{L}\) equals \(\Gamma_0\), that is, a subgroup \(\Gamma\subset \mathrm{Isom}^0(\mathbb{E}^{2,1})\) such that the restriction of \(\mathbb{L}\) to \(\Gamma\) is an isomotphism \(\Gamma\to \Gamma_0\). The cohomology group \(H^1(\Gamma_0,V)\) parametrizes equivalence classes of affine deformations \(\Gamma_u\subset \mathrm{O}(2,1)^0\) of \(\Gamma_0\) acting an an irreducible holonomy representation \(V\) of \(\mathrm{O}(2,1)\). Here, \(u\) is a cocycle in \(Z^1(\Gamma_0,V)\).
The authors define a continuous biaffine map \(\Psi:\mathcal{C}(\Sigma)\times H^1(\Gamma_0,V)\to \mathbb{R}\) which is linear on the vector space \(H^1(\Gamma_0,V)\). They show that an affine deformation \(\Gamma_u\) acts properly if and only if \(\Psi(\mu,[u])\not=0\) for all \(\mu\in \mathcal{C}(\Sigma)\). As a result, the set of proper affine actions whose linear part is a Schottky group is identified with a bundle of open convex cones in \(H^1(\Gamma_0,V)\) over the Fricke-Teichmüller space of \(\Sigma\).
An essential tool used in this work is a generalization of an invariant for affine deformations constructued by G. Margulis in [Sov. Math., Dokl. 28, 435–439 (1983); translation from Dokl. Akad. Nauk SSSR 272, 785–788 (1983; Zbl 0578.57012)] and extended to higher dimenstions by F. Labourie in [J. Differ. Geom. 59, No. 1, 15–31 (2001; Zbl 1037.57031)].


57M05 Fundamental group, presentations, free differential calculus
20H10 Fuchsian groups and their generalizations (group-theoretic aspects)
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
Full Text: DOI arXiv Link


[1] H. Abels, ”Properly discontinuous groups of affine transformations: a survey,” Geom. Dedicata, vol. 87, iss. 1-3, pp. 309-333, 2001. · Zbl 0999.20042 · doi:10.1023/A:1012019004745
[2] H. Abels, G. A. Margulis, and G. A. Soifer, ”Properly discontinuous groups of affine transformations with orthogonal linear part,” C. R. Acad. Sci. Paris Sér. I Math., vol. 324, iss. 3, pp. 253-258, 1997. · Zbl 0933.22015 · doi:10.1016/S0764-4442(99)80356-5
[3] H. Abels, G. A. Margulis, and G. A. Soifer, ”On the Zariski closure of the linear part of a properly discontinuous group of affine transformations,” J. Differential Geom., vol. 60, iss. 2, pp. 315-344, 2002. · Zbl 1061.22012
[4] T. Bedford, M. Keane, and C. Series, Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces, New York: The Clarendon Press Oxford Univ. Press, 1991. · Zbl 0743.00040
[5] Y. Benoist, ”Actions propres sur les espaces homogènes réductifs,” Ann. of Math., vol. 144, iss. 2, pp. 315-347, 1996. · Zbl 0868.22013 · doi:10.2307/2118594
[6] F. Bonahon, ”The geometry of Teichmüller space via geodesic currents,” Invent. Math., vol. 92, iss. 1, pp. 139-162, 1988. · Zbl 0653.32022 · doi:10.1007/BF01393996
[7] N. Bourbaki, Topologie Générale, Paris: Hermann, 1971. · Zbl 0249.54001
[8] R. D. Canary, D. B. A. Epstein, and P. Green, ”Notes on notes of Thurston,” in Analytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, 1984), Cambridge: Cambridge Univ. Press, 1987, pp. 3-92. · Zbl 0612.57009
[9] V. Charette, ”Non-proper affine actions of the holonomy group of a punctured torus,” Forum Math., vol. 18, iss. 1, pp. 121-135, 2006. · Zbl 1096.53041 · doi:10.1515/FORUM.2006.008
[10] V. Charette and T. Drumm, ”Strong marked isospectrality of affine Lorentzian groups,” J. Differential Geom., vol. 66, iss. 3, pp. 437-452, 2004. · Zbl 1083.53045
[11] V. Charette, T. Drumm, and W. M. Goldman, Affine deformations of the holonomy group of a three-holed sphere, (submitted). · Zbl 1202.57001 · doi:10.2140/gt.2010.14.1355
[12] V. Charette and W. M. Goldman, ”Affine Schottky groups and crooked tilings,” in Crystallographic Groups and their Generalizations (Kortrijk, 1999), Providence, RI: Amer. Math. Soc., 2000, pp. 69-97. · Zbl 1161.57303
[13] T. A. Drumm, ”Fundamental polyhedra for Margulis space-times,” PhD Thesis , University of Maryland, 1990. · Zbl 0773.57008 · doi:10.1016/0040-9383(92)90001-X
[14] T. A. Drumm, ”Fundamental polyhedra for Margulis space-times,” Topology, vol. 31, iss. 4, pp. 677-683, 1992. · Zbl 0773.57008 · doi:10.1016/0040-9383(92)90001-X
[15] T. A. Drumm, ”Examples of nonproper affine actions,” Michigan Math. J., vol. 39, iss. 3, pp. 435-442, 1992. · Zbl 0792.57020 · doi:10.1307/mmj/1029004598
[16] T. A. Drumm, ”Linear holonomy of Margulis space-times,” J. Differential Geom., vol. 38, iss. 3, pp. 679-690, 1993. · Zbl 0784.53040
[17] T. A. Drumm, ”Translations and the holonomy of complete affine flat manifolds,” Math. Res. Lett., vol. 1, iss. 6, pp. 757-764, 1994. · Zbl 0831.53041 · doi:10.4310/MRL.1994.v1.n6.a11
[18] T. A. Drumm and W. M. Goldman, ”Complete flat Lorentz \(3\)-manifolds with free fundamental group,” Internat. J. Math., vol. 1, iss. 2, pp. 149-161, 1990. · Zbl 0704.57026 · doi:10.1142/S0129167X90000101
[19] T. A. Drumm and W. M. Goldman, ”Isospectrality of flat Lorentz 3-manifolds,” J. Differential Geom., vol. 58, iss. 3, pp. 457-465, 2001. · Zbl 1036.53048
[20] D. Fried and W. M. Goldman, ”Three-dimensional affine crystallographic groups,” Adv. in Math., vol. 47, iss. 1, pp. 1-49, 1983. · Zbl 0571.57030 · doi:10.1016/0001-8708(83)90053-1
[21] W. M. Goldman, ”The Margulis invariant of isometric actions on Minkowski \((2+1)\)-space,” in Rigidity in Dynamics and Geometry (Cambridge, 2000), New York: Springer-Verlag, 2002, pp. 187-201. · Zbl 1013.53047
[22] W. Goldman and M. W. Hirsch, ”The radiance obstruction and parallel forms on affine manifolds,” Trans. Amer. Math. Soc., vol. 286, iss. 2, pp. 629-649, 1984. · Zbl 0561.57014 · doi:10.2307/1999812
[23] W. M. Goldman and G. A. Margulis, ”Flat Lorentz 3-manifolds and cocompact Fuchsian groups,” in Crystallographic Groups and their Generalizations (Kortrijk, 1999), Providence, RI: Amer. Math. Soc., 2000, pp. 135-145. · Zbl 1039.53074
[24] W. M. Goldman, G. A. Margulis, and Y. Minsky, Flat Lorentz \(3\)-manifolds and laminations on hyperbolic surfaces, in preparation.
[25] B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems, Cambridge: Cambridge Univ. Press, 1995, vol. 54. · Zbl 0878.58020
[26] C. Jones, ”Pyramids of properness: Towards the properness conjecture,” PhD Thesis , University of Maryland, 2003.
[27] M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Boston, MA: Birkhäuser, 2001. · Zbl 0958.57001
[28] I. Kim, ”Affine action and Margulis invariant,” J. Funct. Anal., vol. 219, iss. 1, pp. 205-225, 2005. · Zbl 1085.57024 · doi:10.1016/j.jfa.2004.04.011
[29] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. I, Interscience Publishers, a division of John Wiley & Sons, New York, 1963. · Zbl 0119.37502
[30] J. -L. Koszul, Lectures on Groups of Transformations, Bombay: Tata Institute of Fundamental Research, 1965. · Zbl 0195.04605
[31] F. Labourie, ”Fuchsian affine actions of surface groups,” J. Differential Geom., vol. 59, iss. 1, pp. 15-31, 2001. · Zbl 1037.57031
[32] A. Marden, Outer Circles: An Introduction to Hyperbolic 3-Manifolds, Cambridge: Cambridge Univ. Press, 2007. · Zbl 1149.57030
[33] G. A. Margulis, ”Free completely discontinuous groups of affine transformations,” Dokl. Akad. Nauk SSSR, vol. 272, iss. 4, pp. 785-788, 1983. · Zbl 0578.57012
[34] G. A. Margulis, ”Complete affine locally flat manifolds with a free fundamental group,” J. Soviet Math., vol. 134, pp. 129-134, 1987. · Zbl 0611.57023 · doi:10.1007/BF01104978
[35] G. Mess, ”Lorentz spacetimes of constant curvature,” Geom. Dedicata, vol. 126, pp. 3-45, 2007. · Zbl 1206.83117 · doi:10.1007/s10711-007-9155-7
[36] J. Milnor, ”On fundamental groups of complete affinely flat manifolds,” Adv. in Math., vol. 25, iss. 2, pp. 178-187, 1977. · Zbl 0364.55001 · doi:10.1016/0001-8708(77)90004-4
[37] R. S. Palais, ”On the existence of slices for actions of non-compact Lie groups,” Ann. of Math., vol. 73, pp. 295-323, 1961. · Zbl 0103.01802 · doi:10.2307/1970335
[38] M. A. Rieffel, ”Strong Morita equivalence of certain transformation group \(C^*\)-algebras,” Math. Ann., vol. 222, iss. 1, pp. 7-22, 1976. · Zbl 0328.22013 · doi:10.1007/BF01418238
[39] M. A. Rieffel, ”Applications of strong Morita equivalence to transformation group \(C^{\ast} \)-algebras,” in Operator Algebras and Applications, Part I (Kingston, Ont., 1980), Providence, R.I.: Amer. Math. Soc., 1982, pp. 299-310. · Zbl 0526.46055
[40] C. Series, ”Geometrical Markov coding of geodesics on surfaces of constant negative curvature,” Ergodic Theory Dynam. Systems, vol. 6, iss. 4, pp. 601-625, 1986. · Zbl 0593.58033 · doi:10.1017/S0143385700003722
[41] W. Thurston, Minimal stretch maps between hyperbolic surfaces.
[42] J. Tits, ”Free subgroups in linear groups,” J. Algebra, vol. 20, pp. 250-270, 1972. · Zbl 0236.20032 · doi:10.1016/0021-8693(72)90058-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.