[1] |
Reid, W. T.: Riccati differential equations. (1972) · Zbl 0254.34003 |

[2] |
Carinena, J. F.; Marmo, G.; Perelomov, A. M.; Ranada, M. F.: Related operators and exact solutions of Schrödinger equations. Int. J. Mod. phys. A 13, 4913-4929 (1998) |

[3] |
Scott, M. R.: Invariant imbedding and its applications to ordinary differential equations. (1973) · Zbl 0271.34001 |

[4] |
Chen, Y.; Li, B.: General projective Riccati equation method and exact solutions for generalized KdV-type and KdV -- Burgers-type equations with nonlinear terms of any order. Chaos, solitons & fractals 19, 977-984 (2004) · Zbl 1057.35051 |

[5] |
Xie, F. D.; Gao, X. S.: Exact travelling wave solutions for a class of nonlinear partial differential equations. Chaos, solitons & fractals 19, 1113-1117 (2004) · Zbl 1068.35146 |

[6] |
Blanes, S.; Jodar, L.; Ponsoda, E.: Approximate solutions with a priori error bounds for continuous coefficient matrix Riccati equations. Math. comput. Modelling 31, 1-15 (2000) · Zbl 1042.34511 |

[7] |
El-Tawil, M. A.; Bahnasawi, A. A.; Abdel-Naby, A.: Solving Riccati differential equation using Adomian’s decomposition method. Appl. math. Comput. 157, 503-514 (2004) · Zbl 1054.65071 |

[8] |
Abbasbandy, S.: Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method. Appl. math. Comput. 172, 485-490 (2006) · Zbl 1088.65063 |

[9] |
X.-F. Li, Approximate solution of linear ordinary differential equations with variable coefficients, Math. Comput. Simul. doi:10.1016/j.matcom.2006.09.006. |