zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability of Runge-Kutta methods in the numerical solution of linear impulsive differential equations. (English) Zbl 1193.65121
Summary: This paper deals with the stability analysis of the analytic and numerical solutions of linear impulsive differential equations. The numerical method with variable stepsize is defined, the conditions that the numerical solutions preserve the stability property of the analytic ones are obtained and some numerical experiments are given.

65L06Multistep, Runge-Kutta, and extrapolation methods
34A37Differential equations with impulses
Full Text: DOI
[1] Akhmet, M. U.: On the general problem of stability for impulsive differential equations. J. math. Anal. appl. 288, 182-196 (2003) · Zbl 1047.34094
[2] Bainov, D. D.; Simeonov, P. S.: Systems with impulsive effect: stability, theory and applications. (1989) · Zbl 0676.34035
[3] Butcher, J. C.: The numerical analysis of ordinary differential equations: Runge -- Kutta and general linear methods. (1987) · Zbl 0616.65072
[4] Dekker, K.; Verwer, J. G.: Stability of Runge -- Kutta methods for stiff nonlinear differential equations. (1984) · Zbl 0571.65057
[5] Dong, L. Z.; Chen, L.; Sun, L. H.: Extiction and permanence of the predator-prey system with stocking of prey and harvesting of predator impulsively. Math. meth. Appl. sci. 29, 415-425 (2006) · Zbl 1086.92051
[6] Hairer, E.; Wanner, G.: Solving ordinary differential equations II. Stiff and differential algebraic problems (1996) · Zbl 0859.65067
[7] Iserles, A.; Nørsett, S. P.: Order stars and rational approximations to $exp(z)$. Appl. numer. Math. 5, 63-70 (1989) · Zbl 0674.65043
[8] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations. (1989) · Zbl 0719.34002
[9] Lambert, J. D.: Numerical methods for ordinary differential systems. (1991) · Zbl 0745.65049
[10] M.Z. Liu, S.F. Ma, Z.W. Yang, Stability analysis of Runge -- Kutta methods for unbounded retarded differential equations with piecewise continuous arguments, Appl. Math. Comput., in press, doi:10.1016/j.amc.2006.12.008. · Zbl 1193.65122
[11] Mil’man, V. D.; Myshkis, A. D.: On the stability of motion in the presence of impulses. Sib. math. J. 1, 233-237 (1960)
[12] Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations. (1995) · Zbl 0837.34003
[13] Wanner, G.; Hairer, E.; Nørsett, S. P.: Order stars and stability theorems. Bit 18, 475-489 (1978) · Zbl 0444.65039