zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear stability of Runge-Kutta methods for neutral delay integro-differential equations. (English) Zbl 1193.65123
Summary: The present paper is concerned with the numerical solution to initial value problems of neutral delay integro-differential equations (NDIDEs). The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for a class $R(\alpha ,\beta _{1},\beta _{2},\gamma )$ of nonlinear systems of NDIDEs are derived. A numerical test that confirms the theoretical results is given in the end.

MSC:
65L06Multistep, Runge-Kutta, and extrapolation methods
34K28Numerical approximation of solutions of functional-differential equations
34K40Neutral functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Zhang, C. J.: Nonlinear stability of natural Runge -- Kutta methods for neutral delay differential equations. J. comput. Math. 20, 583-590 (2002) · Zbl 1018.65101
[2] Yu, Y. X.; Li, S. F.: Asymptotic stability of linear $\theta $-methods for nonlinear neutral delay differential equations. Numer. math. A J. Chin. univ. 28, 103-110 (2006) · Zbl 1115.65349
[3] Wang, W. S.; Li, S. F.: Stability analysis of nonlinear delay differential equations of neutral type. Math. numer. Sinica 26, 303-314 (2004)
[4] Vermiglio, R.; Torelli, L.: A stable numerical approach for implicit nonlinear neutral delay differential equations. Bit 43, 195-215 (2003) · Zbl 1030.65078
[5] Liu, Y. K.: Numerical solution of implicit neutral functional differential equations. SIAM J. Numer. anal. 36, 516-528 (1999) · Zbl 0920.65045
[6] Zhang, C. J.; Vandewalle, S.: General linear methods for Volterra integro-differential equations with memory. SIAM J. Sci. comput. 27, 2010-2031 (2006) · Zbl 1104.65133
[7] Zhang, C. J.; Vandewalle, S.: Stability analysis of Runge -- Kutta methods for nonlinear Volterra delay-integro-differential equations. IMA J. Numer. anal. 24, 193-214 (2004) · Zbl 1057.65104
[8] Koto, T.: Stability of Runge -- Kutta methods for delay integro-differential equations. J. comput. Appl. math. 145, 483-492 (2002) · Zbl 1002.65148
[9] Koto, T.: Stability of $\theta $-methods for delay integro-differential equations. J. comput. Appl. math. 161, 393-404 (2003) · Zbl 1042.65108
[10] Torelli, L.: Stability of numerical methods for delay differential equations. J. comput. Appl. math. 25, 15-26 (1989) · Zbl 0664.65073
[11] Bellen, A.; Zennaro, M.: Strong contractivity properties of numerical methods for ordinary and delay differential equations. Appl. numer. Math. 9, 321-346 (1992) · Zbl 0749.65042
[12] Zennaro, M.: Asymptotic stability analysis of Runge -- Kutta methods for nonlinear systems of delay differential equations. Numer. math. 77, 549-563 (1997) · Zbl 0886.65092
[13] Huang, C. M.; Fu, H. Y.; Li, S. F.; Chen, G. N.: Stability analysis of Runge -- Kutta methods for non-linear delay differential equations. Bit 39, 270-280 (1999) · Zbl 0930.65090
[14] Huang, C. M.; Fu, H. Y.; Li, S. F.; Chen, G. N.: Stability and error analysis of one-lag methods for nonlinear delay differential equations. J. comput. Appl. math. 103, 263-279 (1999) · Zbl 0948.65078
[15] Zhang, C. J.; Zhou, S. Z.: Nonlinear stability and D-convergence of Runge -- Kutta methods for delay differential equations. J. comput. Appl. math. 85, 225-237 (1997) · Zbl 0904.65082
[16] Zhao, J. J.; Xu, Y.; Liu, M. Z.: Stability analysis of numerical methods for linear neutral Volterra delay-integro-differential system. Appl. math. Comput. 167, 1062-1079 (2005) · Zbl 1083.65129
[17] Burrage, K.; Butcher, J. C.: Non-linear stability of a general class of differential equation methods. Bit 20, 185-203 (1980) · Zbl 0431.65051