×

The variational iteration method for solving a neutral functional-differential equation with proportional delays. (English) Zbl 1193.65145

Summary: The variational iteration method is applied to neutral functional-differential equations with proportional delays. Illustrative examples are given to show the efficiency of the method. We also compare the performance of the method with that of a particular Runge-Kutta method and a one-leg \(\theta \)-method.

MSC:

65L99 Numerical methods for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] He, JiHuan, Variational iteration method—A kind of non-linear analytical technique: some examples, Internat. J. non-linear mech., 34, 4, 699-708, (1999) · Zbl 1342.34005
[2] He, JiHuan, Variational iteration method—some recent results and new interpretations, J. comput. appl. math., 207, 1, 3-17, (2007) · Zbl 1119.65049
[3] He, JiHuan; Wu, XuHong, Variational iteration method: new development and applications, Comput. math. appl., 54, 7-8, 881-894, (2007) · Zbl 1141.65372
[4] He, Jihuan; Wu, Guocheng; Austin, F., The variational iteration method which should be followed, Nonlinear sci. lett. A, 1, 1, 1-30, (2010)
[5] Herisanu, Nicolae; Marinca, Vasile, A modified variational iteration method for strongly nonlinear problems, Nonlinear sci. lett. A, 1, 2, 183-192, (2010) · Zbl 1258.74102
[6] Golbabai, A.; Javidi, M., A variational iteration method for solving parabolic partial differential equations, Comput. math. appl., 54, 7-8, 987-992, (2007) · Zbl 1141.65385
[7] Lu, Junfeng, Variational iteration method for solving a nonlinear system of second-order boundary value problems, Comput. math. appl., 54, 7-8, 1133-1138, (2007) · Zbl 1141.65374
[8] Ramos, J.I., On the variational iteration method and other iterative techniques for nonlinear differential equations, Appl. math. comput., 199, 1, 39-69, (2008) · Zbl 1142.65082
[9] Yu, ZhanHua, Variational iteration method for solving the multi-pantograph delay equation, Phys. lett. A, 372, 43, 6475-6479, (2008) · Zbl 1225.34024
[10] Shou, DaHua; He, JiHuan, Beyond Adomian method: the variational iteration method for solving heat-like and wave-like equations with variable coefficients, Phys. lett. A, 372, 3, 233-237, (2008) · Zbl 1217.35091
[11] Hemeda, A.A., Variational iteration method for solving wave equation, Comput. math. appl., 56, 8, 1948-1953, (2008) · Zbl 1165.65396
[12] Wazwaz, Abdul-Majid, A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos solitons fractals, 37, 4, 1136-1142, (2008) · Zbl 1148.35353
[13] Noor, Muhammad Aslam; Noor, Khalida Inayat; Mohyud-Din, Syed Tauseef, Variational iteration method for solving sixth-order boundary value problems, Commun. nonlinear sci. numer. simul., 14, 6, 2571-2580, (2009) · Zbl 1221.65176
[14] Das, S., Analytical solution of a fractional diffusion equation by variational iteration method, Comput. math. appl., 57, 3, 483-487, (2009) · Zbl 1165.35398
[15] Tian, Lixin; Yin, Jiuli, Shock-peakon and shock-compacton solutions for \(K(p, q)\) equation by variational iteration method, J. comput. appl. math., 207, 1, 46-52, (2007) · Zbl 1119.65099
[16] Bellen, Alfredo; Zennaro, Marino, Numerical methods for delay differential equations, () · Zbl 1255.65129
[17] Ishiwata, Emiko; Muroya, Yoshiaki, Rational approximation method for delay differential equations with proportional delay, Appl. math. comput., 187, 2, 741-747, (2007) · Zbl 1117.65105
[18] Ishiwata, Emiko; Muroya, Yoshiaki; Brunner, Hermann, A super-attainable order in collocation methods for differential equations with proportional delay, Appl. math. comput., 198, 1, 227-236, (2008) · Zbl 1137.65047
[19] Hu, Peng; Huang, Chengming; Wu, Shulin, Asymptotic stability of linear multistep methods for nonlinear neutral delay differential equations, Appl. math. comput., 211, 1, 95-101, (2009) · Zbl 1400.65035
[20] Wang, Wansheng; Zhang, Yuan; Li, Shoufu, Stability of continuous runge – kutta-type methods for nonlinear neutral delay-differential equations, Appl. math. modell., 33, 8, 3319-3329, (2009) · Zbl 1205.65214
[21] Wang, WanSheng; Li, ShouFu, On the one-leg \(\theta\)-methods for solving nonlinear neutral functional differential equations, Appl. math. comput., 193, 1, 285-301, (2007) · Zbl 1193.34156
[22] Wang, Wansheng; Qin, Tingting; Li, Shoufu, Stability of one-leg \(\theta\)-methods for nonlinear neutral differential equations with proportional delay, Appl. math. comput., 213, 1, 177-183, (2009) · Zbl 1172.65044
[23] He, JiHuan, Variational iteration method for autonomous ordinary differential systems, Appl. math. comput., 114, 2-3, 115-123, (2000) · Zbl 1027.34009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.