zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solution of nonlinear fractional differential equations using homotopy analysis method. (English) Zbl 1193.65147
Summary: The homotopy analysis method has been applied to solve nonlinear differential equations of fractional order. The validity of this method has successfully been accomplished by applying it to find the solution of two nonlinear fractional equations. The results obtained by homotopy analysis method have been compared with those exact solutions. The results show that the solution of homotopy analysis method is good agreement with the exact solution.

65L99Numerical methods for ODE
35R11Fractional partial differential equations
26A33Fractional derivatives and integrals (real functions)
Full Text: DOI
[1] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[2] Caputo, M.: J. roy. Astron. soc., J. roy. Astron. soc. 13, 529 (1967)
[3] Y. Luchko, R. Groreflor, Fachbreich Mathematik and Informaik, Freic Universitat, Berlin, 1998.
[4] Ganjiani, M.; Ganjiani, H.: Nonlinear dyn., Nonlinear dyn. 56, 159 (2009) · Zbl 1172.65379
[5] Liao, S. J.: Int. J. Non-linear mech., Int. J. Non-linear mech. 34, 759 (1999)
[6] Liao, S. J.: Beyond perturbation: introduction to the homotopy analysis method, (2003)
[7] Liao, S. J.: J. fluid mech., J. fluid mech. 488, 189 (2003)
[8] Liao, S. J.: Appl. math. Comput., Appl. math. Comput. 147, 499 (2004)
[9] Liao, S. J.: Int. J. Heat mass transfer, Int. J. Heat mass transfer 48, 2529 (2005)
[10] Mittag-Leffler, G. M.: Rend. accad. Lincei, Rend. accad. Lincei 13, No. 5, 3 (1904)
[11] Odibat, Z.; Momani, S.: Appl. math. Modell., Appl. math. Modell. 32, 28 (2008)