zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-grid finite volume element methods for semilinear parabolic problems. (English) Zbl 1193.65161
The present paper presents a finite volume element method (FVEM) based on two finite element spaces defined on a coarse and a fine grid, applied to a parabolic semilinear problem. An appealing feature is that nonsymmetric and nonlinear problems on a fine space could be regarded as solving a symmetric linear problem on the fine space, plus a nonsymmetric nonlinear problem on the coarse space. The wellposedness of the FVEM is assessed using the Carathéodory theorem, and optimal convergence rates are derived for the one-grid and the two-grid method. Finally, a numerical example illustrates the behavior of the error predicted by the provided theoretical findings.

65M08Finite volume methods (IVP of PDE)
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
65M12Stability and convergence of numerical methods (IVP of PDE)
65M15Error bounds (IVP of PDE)
65M55Multigrid methods; domain decomposition (IVP of PDE)
35K55Nonlinear parabolic equations
Full Text: DOI
[1] Bank, R. E.; Rose, D. J.: Some error estimates for the box method, SIAM J. Numer. anal. 24, 777-787 (1987) · Zbl 0634.65105 · doi:10.1137/0724050
[2] Bi, C.; Ginting, V.: Two-grid finite volume element method for linear and nonlinear elliptic problems, Numer. math. 107, 177-198 (2007) · Zbl 1134.65077 · doi:10.1007/s00211-007-0115-9
[3] Cai, Z.: On the finite volume element methods, Numer. math. 58, 713-735 (1991) · Zbl 0731.65093
[4] Cai, Z.; Mccormick, S.: On the accuracy of the finite volume element method for diffusion equations on composite grids, SIAM J. Numer. anal. 27, 636-655 (1990) · Zbl 0707.65073
[5] Chatzipantelidis, P.; Lazarov, R. D.; Thomée, V.: Error estimate for a finite volume element method for parabolic equations in convex polygonal domains, Numer. meth. Pdes 20, 650-674 (2004) · Zbl 1067.65092 · doi:10.1002/num.20006
[6] Chen, Y.; Huang, Y.; Yu, D.: A two-grid method for expanded mixed finite-element solution of semilinear reaction -- diffusion equations, Int. J. Numer. meth. Eng. 57, 139-209 (2003) · Zbl 1062.65104 · doi:10.1002/nme.668
[7] Chou, S. H.; Li, Q.: Error estimates in L2, H1 and L$\infty $ in covolume methods for elliptic and parabolic problems: A unified approach, Math. comp. 69, 103-120 (2000) · Zbl 0936.65127 · doi:10.1090/S0025-5718-99-01192-8
[8] Chou, S. H.; Kwak, D. Y.; Li, Q.: Lp error estimates and superconvergence for covolume or finite volume element methods, Numer. meth. Pdes 19, 463-486 (2003) · Zbl 1029.65123 · doi:10.1002/num.10059
[9] Dawson, C. N.; Wheeler, M. F.: Two-grid methods for mixed finite element approximations of nonlinear parabolic equations, Contemp. math. 180, 191-203 (1994) · Zbl 0817.65080
[10] Dawson, C. N.; Wheeler, M. F.; Woodward, C. S.: A two-grid finite difference scheme for nonlinear parabolic equations, SIAM J. Numer. anal. 35, 435-452 (1998) · Zbl 0927.65107 · doi:10.1137/S0036142995293493
[11] Ewing, R. E.; Lazarov, R. D.; Lin, Y. P.: Finite volume element approximations of nonlocal reactive flows in porous media, Numer. meth. Pdes 16, 285-311 (2000) · Zbl 0961.76050 · doi:10.1002/(SICI)1098-2426(200005)16:3<285::AID-NUM2>3.0.CO;2-3
[12] Ewing, R. E.; Lin, T.; Lin, Y. P.: On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. anal. 39, No. 6, 1865-1888 (2002) · Zbl 1036.65084 · doi:10.1137/S0036142900368873
[13] Hackbusch, W.: On first and second order box schemes, Computing 41, 277-296 (1989) · Zbl 0649.65052 · doi:10.1007/BF02241218
[14] Lasis, A.; Süli, E.: Hp-version discontinuous Galerkin finite element method for semilinear parabolic problems, SIAM J. Numer. anal. 45, 1544-1569 (2007) · Zbl 1155.65073 · doi:10.1137/050642125
[15] Layton, W.; Lenferink, W.: Two-level Picard and modified Picard methods for Navier -- Stokes equations, Appl. math. Comput. 69, 263-274 (1995) · Zbl 0828.76017 · doi:10.1016/0096-3003(94)00134-P
[16] Li, R.; Chen, Z.; Wu, W.: Generalized difference methods for differential equations numerical analysis of finite volume methods, (2000) · Zbl 0940.65125
[17] Ma, X.; Shu, S.; Zhou, A.: Symmetric finite volume discretizations for parabolic problems, Comput. meth. Appl. mech. Eng. 192, 4467-4485 (2003) · Zbl 1038.65079 · doi:10.1016/S0045-7825(03)00430-4
[18] Mishev, I. D.: Finite volume methods on Voronoi meshes, Numer. meth. Pdes 14, 193-212 (1998) · Zbl 0903.65083 · doi:10.1002/(SICI)1098-2426(199803)14:2<193::AID-NUM4>3.0.CO;2-J
[19] Rui, H.: Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems, J. comput. Appl. math. 146, 373-386 (2002) · Zbl 1020.65066 · doi:10.1016/S0377-0427(02)00370-9
[20] Thomée, V.; Wahlbin, L.: On Galerkin methods in semilinear parabolic problems, SIAM J. Numer. anal. 12, 378-389 (1975) · Zbl 0307.35007 · doi:10.1137/0712030
[21] Utnes, T.: Two-grid finite element formulations of the incompressible Navier -- Stokes equation, Commun. numer. Meth. eng. 24, 675-684 (1997) · Zbl 0883.76052 · doi:10.1002/(SICI)1099-0887(199708)13:8<675::AID-CNM98>3.0.CO;2-N
[22] Wu, L.; Allen, M. B.: A two-grid method for mixed finite-element solutions of reaction -- diffusion equations, Numer. meth. Pdes 15, 589-604 (1999) · Zbl 0942.65106 · doi:10.1002/(SICI)1098-2426(199909)15:5<589::AID-NUM6>3.0.CO;2-W
[23] Xu, J.: A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. comput. 15, 231-237 (1994) · Zbl 0795.65077 · doi:10.1137/0915016
[24] Xu, J.: Two-grid discretization techniques for linear and nonlinear pdes, SIAM J. Numer. anal. 33, 1759-1777 (1996) · Zbl 0860.65119