zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An efficient algorithm for solving integro-differential equations system. (English) Zbl 1193.65234
Summary: An application of He’s homotopy perturbation (HPM) method is applied to solve of system of integro-differential equations. The results reveal that the HPM is very effective and simple.

MSC:
65R99Numerical methods for integral equations and transforms
45J05Integro-ordinary differential equations
WorldCat.org
Full Text: DOI
References:
[1] He, J. H.: Homotopy perturbation technique. Comput. methods appl. Mech. eng. 178, No. 3 -- 4, 257-262 (1999) · Zbl 0956.70017
[2] He, J. H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int. J. Non-linear mech. 35, No. 1, 37-43 (2000) · Zbl 1068.74618
[3] He, J. H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. math. Comput. 135, 73-79 (2003) · Zbl 1030.34013
[4] He, J. H.: Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos solitons fract. 19, No. 4, 847-851 (2005) · Zbl 1135.35303
[5] Liu, H. M.: Variational approach to nonlinear electrochemical system. Chaos solitons fract. 23, No. 2, 573-576 (2005)
[6] He, J. H.: Variational iteration method: a kind of nonlinear analytical technique: some examples. Int. J. Non-linear mech. 34, No. 4, 699-708 (1999) · Zbl 05137891
[7] He, J. H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Moder. phys. B 20, 1141-1199 (2006) · Zbl 1102.34039
[8] He, J. H.: A review on some new recently developed nonlinear analytical techniques. Int. J. Nonlinear sci. Numer. simul. 1, No. 1, 51-70 (2000) · Zbl 0966.65056
[9] He, J. H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos solitons fract. 26, 695-700 (2005) · Zbl 1072.35502
[10] He, J. H.: Comparison of homotopy perturbation method and homotopy analysis method. Appl. math. Comput. 156, 527-539 (2004) · Zbl 1062.65074
[11] Abbasbandy, S.: Numerical solutions of the integral equations: homotopy perturbation method and Adomian’s decomposition method. Appl. math. Comput. 173, No. 2 -- 3, 493-500 (2006) · Zbl 1090.65143
[12] Abbasbandy, S.: Application of he’s homotopy perturbation method for Laplace transform. Chaos solitons fract. 30, 1206-1212 (2006) · Zbl 1142.65417
[13] Abbasbandy, S.: Application of he’s homotopy perturbation method to functional integral equations. Chaos solitons fract. 31, No. 5, 1243-1247 (2007) · Zbl 1139.65085
[14] M. Ghasemi, M. Tavassoli Kajani, E. Babolian, Numerical solutions of the nonlinear integro-differential equations: Wavelet -- Galerkin method and homotopy perturbation method, Appl. Math. Comput., doi:10.1016/j.amc.2006.10.001. · Zbl 1114.65368
[15] M. Ghasemi, M. Tavassoli Kajani, E. Babolian, Numerical solutions of the nonlinear Volterra -- Fredholm integral equations by using homotopy perturbation method, Appl. Math. Comput., doi:10.1016/j.amc.2006.10.015. · Zbl 1114.65367
[16] M. Ghasemi, M. Tavassoli Kajani, E. Babolian, Application of He’s homotopy perturbation method to nonlinear integro-differential equations, Appl. Math. Comput., doi:10.1016/j.amc.2006.10.016. · Zbl 1118.65394
[17] Noor, Muhammad Aslam; Mohyud-Din, Syed Tauseef: An efficient algorithm for solving fifth-order boundary value problems. Math. comput. Model. 45, No. 7 -- 8, 954-964 (2007) · Zbl 1133.65052
[18] He, J. H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. math. Comput. 151, 287-292 (2004) · Zbl 1039.65052
[19] Delves, L. M.; Mohamed, J. L.: Computational methods for integral equations. (1985) · Zbl 0592.65093
[20] Nayfeh, A. H.: Introduction to perturbation technique. (1981) · Zbl 0449.34001
[21] Liao, S. J.: An approximate solution technique not depending on small parameter: a special example. Int. J. Nonlinear mech. 30, No. 3, 371-380 (1995) · Zbl 0837.76073
[22] Biazar, J.: Solution of systems of integral-differential equations by Adomian decomposition method. Appl. math. Comput. 168, 1232-1238 (2005) · Zbl 1082.65594