Birkar, C.; Shokurov, V. V. Mld’s vs thresholds and flips. (English) Zbl 1194.14020 J. Reine Angew. Math. 638, 209-234 (2010). The authors prove that the Log Minimal Model Program, the ascending chain condition conjecture for minimal log discrepancies and the boundedness of canonical Mori-Fano varieties in every dimension up to \(n\) imply the following: the ascending chain condition conjecture a-log canonical thresholds (natural generalization of standard log canonical thresholds) in every dimension up to \(n\), the ascending chain condition conjecture for standard log canonical thresholds in every dimension up to \(n+1\), the termination of log flips for effective log canonical log pairs in every dimension up to \(n+1\). Reviewer: Ivan Cheltsov (Edinburgh) Cited in 1 ReviewCited in 4 Documents MSC: 14E30 Minimal model program (Mori theory, extremal rays) Keywords:minimal log discrepancy; log canonical thresholds; log flips Citations:Zbl 1107.14012 PDF BibTeX XML Cite \textit{C. Birkar} and \textit{V. V. Shokurov}, J. Reine Angew. Math. 638, 209--234 (2010; Zbl 1194.14020) Full Text: DOI arXiv OpenURL References: [1] DOI: 10.1215/S0012-7094-93-06922-0 · Zbl 0791.14006 [2] DOI: 10.1142/S0129167X94000395 · Zbl 0838.14028 [3] Ambro F., Math. Res. Lett. 6 pp 5– (1999) [4] Ambro F., Central Europ. Math. J. 4 (2) pp 1– (2006) [5] DOI: 10.1215/S0012-7094-07-13615-9 · Zbl 1109.14018 [6] DOI: 10.1007/BF02678179 · Zbl 0873.14003 [7] Cheltsov I., Math. Sb. 193 pp 5– (2002) [8] Corti A., J. Alg. Geom. 4 pp 223– (1994) [9] DOI: 10.1070/RM2005v060n01ABEH000807 · Zbl 1079.14023 [10] Kawamata Y., Internat. J. Math. 3 pp 5– (1992) [11] DOI: 10.1007/BF01445123 · Zbl 0818.14002 [12] Kollár J., Astérisque 211 pp 155– (1992) [13] Kollár J., J. Di{\currency}. Geom. 36 pp 3– (1992) [14] DOI: 10.3792/pjaa.76.73 · Zbl 0981.14016 [15] Kernan J., Manuscr. Math. 114 pp 3– (2004) [16] Prokhorov Yu., J. Alg. Geom. 18 pp 151– (2009) [17] DOI: 10.1070/IM1993v040n01ABEH001862 · Zbl 0785.14023 [18] DOI: 10.1007/BF02362335 · Zbl 0873.14014 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.