×

zbMATH — the first resource for mathematics

Strong accessibility for hyperbolic groups. (English) Zbl 1194.20047
Summary: We use an accessibility result of T. Delzant and L. Potyagailo [Topology 40, No. 3, 617-629 (2001; Zbl 0996.20027)] to prove Swarup’s Strong Accessibility Conjecture for Gromov hyperbolic groups with no 2-torsion. It follows that, if \(M\) is an irreducible, orientable, compact 3-manifold with hyperbolic fundamental group, then any hierarchy in which \(M\) is decomposed alternately along compressing disks and essential annuli is finite.

MSC:
20F67 Hyperbolic groups and nonpositively curved groups
20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20F65 Geometric group theory
20E08 Groups acting on trees
57M07 Topological methods in group theory
57N35 Embeddings and immersions in topological manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] M Bestvina, Questions in geometric group theory
[2] M Bestvina, M Feighn, Bounding the complexity of simplicial group actions on trees, Invent. Math. 103 (1991) 449 · Zbl 0724.20019
[3] B H Bowditch, Connectedness properties of limit sets, Trans. Amer. Math. Soc. 351 (1999) 3673 · Zbl 0938.20033
[4] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren series 319, Springer (1999) · Zbl 0988.53001
[5] H D Cao, X P Zhu, Hamilton-Perelman’s proof of the Poincaré Conjecture and the Geometrization Conjecture
[6] T Delzant, L Potyagailo, Accessibilité hiérarchique des groupes de présentation finie, Topology 40 (2001) 617 · Zbl 0996.20027
[7] M J Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449 · Zbl 0572.20025
[8] M J Dunwoody, An inaccessible group, London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 75 · Zbl 0833.20035
[9] I Gru\vsko, On the bases of a free product of groups, Mat. Sbornik 8 (1940) 169
[10] J Hempel, \(3\)-Manifolds, Ann. of Math. Studies 86, Princeton University Press (1976) · Zbl 0345.57001
[11] J Morgan, G Tian, Ricci flow and the Poincaré conjecture, Clay Math. Monographs 3, Amer. Math. Soc. (2007) · Zbl 1179.57045
[12] A Y Ol\(^{\prime}\)shanskiĭ, On residualing homomorphisms and \(G\)-subgroups of hyperbolic groups, Internat. J. Algebra Comput. 3 (1993) 365 · Zbl 0830.20053
[13] P Scott, G A Swarup, Errata for “Regular neighbourhoods and canonical decompositions for groups”, [next paper below] · Zbl 1036.20028
[14] P Scott, G A Swarup, Regular neighbourhoods and canonical decompositions for groups, Astérisque 289 (2003) · Zbl 1036.20028
[15] P Scott, T Wall, Topological methods in group theory, London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 137 · Zbl 0423.20023
[16] J Stallings, On fibering certain \(3\)-manifolds, Prentice-Hall (1962) 95 · Zbl 1246.57049
[17] J R Stallings, Topology of finite graphs, Invent. Math. 71 (1983) 551 · Zbl 0521.20013
[18] C T C Wall, Pairs of relative cohomological dimension one, J. Pure Appl. Algebra 1 (1971) 141 · Zbl 0218.18011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.