zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mittag-Leffler functions and stable Lévy processes without negative jumps. (Fonctions de Mittag-Leffler et processus de Lévy stables sans sauts négatifs.) (French. English summary) Zbl 1194.33022
Summary: We remark that a certain transformation of the Mittag-Leffler function $\alpha $ is completely monotone for every $\alpha \in [1,2]$. Thanks to the exact expression of its Bernstein density function, we obtain an identity in law between one-sided exit times for completely asymmetric stable Lévy processes. In the spectrally positive case, this identity gives an expression for the density of the running supremum which is different from the one recently obtained by {\it V. Bernyk, R. C. Dalang} and {\it G. Peskir} [Ann. Probab. 36, No. 5, 1777--1789 (2008; Zbl 1185.60051)].

33E12Mittag-Leffler functions and generalizations
60E05General theory of probability distributions
60G52Stable processes
Full Text: DOI
[1] Bernyk, V.; Dalang, R. C.; Peskir, G.: The law of the supremum of a stable Lévy process with no negative jumps, Ann. probab. 36, 1777-1789 (2008) · Zbl 1185.60051 · doi:10.1214/07-AOP376
[2] Bertoin, J.: Lévy processes, (1996) · Zbl 0861.60003
[3] Bertoin, J.: On the first exit time of a completely asymmetric stable process from a finite interval, Bull. London math. Soc. 28, No. 5, 514-520 (1996) · Zbl 0863.60068 · doi:10.1112/blms/28.5.514
[4] N.H. Bingham, Maxima of sums of random variables and suprema of stable processes, Z. Wahr. Verw. Gebiete 26 (1973) 273--296. · Zbl 0238.60036 · doi:10.1007/BF00534892
[5] Dieudonné, J.: Calcul infinitésimal, (1968) · Zbl 0155.10001
[6] Donati-Martin, C.; Song, S.; Yor, M.: Symmetric stable processes, Fubini’s theorem, and some extensions of the Ciesielski--Taylor identities in law, Stoch. stoch. Rep. 50, No. 1--2, 1-33 (1994) · Zbl 0831.60049
[7] Doney, R. A.: On the maxima of random walks and stable processes and the arc-sine law, Bull. London math. Soc. 19, No. 2, 177-182 (1987) · Zbl 0591.60066 · doi:10.1112/blms/19.2.177
[8] Doney, R. A.: On Wiener--Hopf factorisation and the distribution of extrema for certain stable processes, Ann. probab. 15, No. 4, 1352-1362 (1987) · Zbl 0631.60069 · doi:10.1214/aop/1176991981
[9] Doney, R. A.: Fluctuation theory for Lévy processes, In: lectures from the 35th saint-flour summer school lecture notes in mathematics 1897 (2007)
[10] Feller, W.: An introduction to probability theory and its applications, An introduction to probability theory and its applications (1971) · Zbl 0219.60003
[11] Gorenflo, R.; Mainardi, F.: On Mittag--Leffler-type functions in fractional evolution processes, J. comput. Appl. math. 118, No. 1--2, 283-299 (2000) · Zbl 0970.45005 · doi:10.1016/S0377-0427(00)00294-6
[12] Graczyk, P.; Jakubowski, T.: On Wiener--Hopf factors for stable processes, (2009) · Zbl 1208.60044
[13] Humbert, P.: Quelques résultats relatifs à la fonction de Mittag--Leffler, C. R. Acad. sci. Paris 236, 1467-1468 (1953) · Zbl 0050.10404
[14] Kyprianou, A. E.: Introductory lectures on fluctuations of Lévy processes with applications, (2006) · Zbl 1104.60001
[15] Patie, P.: A few remarks on the supremum of stable processes, Statist. probab. Lett. 79, No. 8, 1125-1128 (2009) · Zbl 1162.60325 · doi:10.1016/j.spl.2009.01.001
[16] P. Patie, Law of the absorption time of positive self-similar Markov processes, Prépublication, Berne, 2009. Téléchargeable sur \langlehttp://arxiv.org/pdf/0911.1203v1 angle.
[17] Pollard, H.: The representation of e-$x{\lambda}$ as a Laplace integral, Bull. am. Math. soc. 52, 908-910 (1946) · Zbl 0060.25007 · doi:10.1090/S0002-9904-1946-08672-3
[18] Pollard, H.: The completely monotonic character of the Mittag--Leffler function $Ea(-x)$, Bull. am. Math. soc. 54, 1115-1116 (1948) · Zbl 0033.35902 · doi:10.1090/S0002-9904-1948-09132-7
[19] Sato, K.: Lévy processes and infinitely divisible distributions, (1999) · Zbl 0973.60001
[20] Schneider, W. R.: Completely monotone generalized Mittag--Leffler functions, Expo. math. 14, No. 1, 3-16 (1996) · Zbl 0843.60024
[21] Yosida, K.: Functional analysis, (1965) · Zbl 0126.11504