zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Breathers in nonlinear lattices: existence, linear stability and quantization. (English) Zbl 1194.34059
Summary: It has been proved by the principle of anti-integrable limit (renamed here anti-continuous limit) and the implicit function theorem that, under rather weak hypotheses, there exist spatially localized and time periodic solutions (“breathers”) in arrays of nonlinear coupled classical oscillators provided the coupling is not too strong. The models can be translationally invariant or not and be of any dimension. There are also time periodic solutions corresponding to arbitrary distributions on the lattice of such solutions (“multibreathers”). The whole set of these solutions can be labeled by a discrete coding sequence. The condition that the frequency of the breather or multibreather solution has no harmonics in the phonon spectrum can be discarded for a large subset of spatially extended time periodic solutions called “phonobreather” which correspond to special codes (which can be also spatially chaotic) and where no oscillator is at rest.These results extend almost without change to models with coupled rotors. The existence of “rotobreathers” which are exact solutions consisting of a single rotor rotating while the other rotors oscillate, is proved. There are also multirotobreather solutions and “phono-rotobreathers”, etc. It is also shown that the phase of the single breathers constituting a multibreather (or multirotobreather) solution can be submitted to a “phase torsion”. These new dynamical structures carry a nonzero energy flow. In models with two dimensions and more, the phase torsion of multibreather solutions can generate new dynamical solutions with vortices in the energy flow.The dynamics of a quantum electron coupled to a classical lattice is also studied within the same approach from the anti-continuous limit. The existence of two kinds of “polarobreathers”, which are spatially exponentially localized dynamical solutions, is proved for a small enough electronic transfer integral. The polarobreathers of the first kind include the standard static polaron. The lattice configuration is static (time independent) when the electron is in an excited state (i.e. the electronic oscillator oscillates periodically). They can be spatially chaotic. A polarobreather of the second kind corresponds to a localized periodic lattice oscillation associated with a localized quasiperiodic electronic oscillation. The most simple of these solutions are those for which both the lattice oscillation and the electron wave function are mostly concentrated close to the same single site.The standard Floquet analysis of the linear stability of the breather and multibreather solutions is shown to be related with the band spectrum property of the Newton operator involved in the implicit function theorem. The Krein theory of bifurcations is reinterpreted from this point of view. The linear stability of the single breather (and rotobreather) solutions is then proved at least at small enough coupling.Finally, it is shown that in the quantum version of translationally invariant classical models (where there cannot exist in principle any strictly localized excitation) there are narrow bands of excitations consisting of bound states of many bosons which are the quantum counterpart of the classical breathers. The bandwidth of these excitations goes exponentially to zero with the number of bound phonons. This theory provides simultaneously existence theorems and a new powerful and accurate numerical method for calculating practically any of the solutions which has been formally predicted to exist. These numerical applications are currently written elsewhere.

34C15Nonlinear oscillations, coupled oscillators (ODE)
35QxxPDE of mathematical physics and other areas
65L10Boundary value problems for ODE (numerical methods)
70K99Nonlinear dynamics (general mechanics)
82C20Dynamic lattice systems and systems on graphs
Full Text: DOI
[1] Mackay, R. S.; Aubry, S.: Nonlinearity. 7, 1623-1643 (1994)
[2] Aubry, S.; Abramovici, G.: Physica D. 43, 199-219 (1990)
[3] Aubry, S.: The concept of anti-integrability: definition, theorems and applications. The IMA volumes in mathematics and applications 44, 7-54 (1992) · Zbl 0760.58033
[4] Aubry, S.: Physica D. 71, 196-221 (1994)
[5] Aubry, S.: Physica D. 86, 284-296 (1995)
[6] Denzler, J.: Comm. math. Phys.. 158, 397-430 (1993)
[7] Arnold, V. I.; Avez, A.: Ergodic problems of classical mechanics app.. 29 (1968)
[8] Moser, J.: Stable and random motion in dynamical systems. Annals of mathematical studies (1973) · Zbl 0271.70009
[9] Bernstein, L.; Eilbeck, J. C.; Scott, A. C.: Nonlinearity. 3, 293 (1990)
[10] Aubry, S.; Mackay, R. S.; Baesens, C.: Physica D. 56, 123-134 (1992)
[11] Chaté, H.: Physica D. (1997)
[12] Mackay, R. S.; Sepulchre, J. A.: Multistability in networks of weakly coupled bistable units. Physica D 82, 243-254 (1995) · Zbl 0891.34060
[13] Mackay, R. S.: Dynamics of networks: features which persist from the uncoupled limit. Proc. kon. Akad. wet. Ned. (1996) · Zbl 0981.37034
[14] R.S. MacKay, Private communication.
[15] Eilbeck, J. C.; Lomdahl, P. S.; Scott, A. C.: Physica D. 16, 318-338 (1983)
[16] Sievers, A. J.; Takeno, S.: Phys. rev. Lett.. 61, 970 (1988)
[17] Takeno, S.; Kisoda, K.; Sievers, A. J.: Progr. theoret. Phys. suppl.. 94, 242 (1988)
[18] Page, J. B.: Phys. rev. B. 41, 2821 (1990)
[19] Campbell, D. K.; Peyrard, M.: D.k.campbell CHAOS -- soviet American perspectives on nonlinear science. CHAOS -- soviet American perspectives on nonlinear science (1990)
[20] Takeno, S.: J. phys. Soc. Japan. 61, 2821 (1992)
[21] Flach, S.; Willis, C. R.; Olbrich, E.: Phys. rev.. 49, 836 (1994)
[22] Flach, S.; Willis, C. R.: Phys. rev. Lett.. 72, 1777 (1994)
[23] Flach, S.; Kladko, K.; Willis, C. R.: Phys. rev. E. 50, 2293 (1994)
[24] Dauxois, T.; Peyrard, M.; Willis, C. R.: Physica D. 57, 267 (1992)
[25] Dauxois, T.; Peyrard, M.: Phys. rev. Lett.. 70, 3935-3938 (1993)
[26] J.L. Mariñ and S. Abury, preprint (1995); Nonlinearity, submitted. · Zbl 0862.35056
[27] J.L. Mariñ and S. Aubry, in preparation.
[28] Dieudonne, J.: Foundation of modern analysis. (1969)
[29] Flach, S.: Phys. rev. E. 51, No. 1503 (1995)
[30] Kivshar, Y.: Phys. rev. E. 48, R43 (1993)
[31] Aubry, S.: A.r.bishopt.schneider soliton and condensed matter physics. Solid state sciences 8, 264-277 (1978)
[32] Aubry, S.: Physica D. 7, 240-258 (1983)
[33] Aubry, S.: Structures incommensurables et brisure de la symétrie de translation in structure et instabilités. 73-194 (1986)
[34] Fillaux, F.; Carlile, C. J.: Phys. rev. B. 42, 5990-6006 (1992)
[35] Takeno, S.; Peyrard, M.: Physica D. 92, 140-163 (1996)
[36] Cretegny, T.; Aubry, S.: Phys. rev. B. (1997)
[37] S. Aubry, in preparation.
[38] Floria, M.; Mariñfalo, J. L.; Aubry, S.: Europhys. lett.. 36, 539-544 (1996)
[39] Tamga, J. M.; Remoissenet, M.; Pouget, J.: Phys. rev. Lett.. 75, 357-361 (1995)
[40] Aubry, S.; Abramovici, G.; Raimbault, J. L.: J. statist. Phys.. 67, 675-780 (1992)
[41] Baesens, C.; Mackay, R. S.: Nonlinearity. 7, 59-84 (1994)
[42] Kitte, C.: Quantum theory of solids. (1963)
[43] Woll, E. J.; Kohn, W.: Phys. rev.. 126, 1963 (1962)
[44] G. Kalosakas and S. Aubry, preprint.
[45] L. Proville and S. Aubry, preprint.
[46] Bambusi, D.: Exponential stability of breathers in Hamiltonian network of weakly coupled oscillators. Nonlinearity 9, 433-457 (1996) · Zbl 0925.70230
[47] Bonjour, F.; Choquard, P.: Helv. phys. Acta. 68, 235-263 (1995)
[48] Gutzwiller, M. C.: Chaos in classical and quantum mechanisc IAM. (1990) · Zbl 0727.70029
[49] Souriau, J. M.: Structure des systèmes dynamiques Paris-dunod. (1970) · Zbl 0186.58001
[50] Flach, S.: Phys. rev. E. 50, 3134 (1994)
[51] Flach, S.: Phys. rev. E. 51, 3579 (1995)
[52] Scott, A. C.; Eilbeck, J. C.; Gilhøl, H.: Physica D. 78, 194-213 (1994)
[53] Ablowitz, M. J.; Ladik, J. F.: J. math. Phys.. 17, 1011-1018 (1976)
[54] Aubry, S.; Flach, S.; Kladko, K.; Olbrich, E.: Phys. rev. Lett.. 76, 1607-1610 (1996)
[55] Takeno, S.; Hori, K.: J. phys. Soc. Japan. 60, 947 (1991)
[56] Chen, D.; Aubry, S.; Tsironis, G.: Phys. rev. Lett.. 77, 4776-4779 (1996)
[57] Tsironis, G.; Aubry, S.: Phys. rev. Lett.. 77, 5225-5228 (1996)