zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent asymptotic stability for neural networks with distributed delays. (English) Zbl 1194.34140
The authors consider the neural networks with distributed delays $$u_i(t)= -d_i(u_i(t))+ \sum^n_{j=1} w_{ij} g_j(u_j(t))+ \sum^n_{j=1} w^\tau_{ij} \int^t_{-\infty} K_{ij}(t- s)g_j(u_j(s))\,ds+ I_i,$$ $i= 1,2,\dots, n$. Here $w_{ij}, w^\tau_{ij}$, $I_i$ are real constants. Under assumptions, too lengthy to be stated here, they obtain, by using Lyapunov functionals, local and global asymptotic stability results of the equilibrium.

MSC:
34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
45D05Volterra integral equations
45M05Asymptotic theory of integral equations
WorldCat.org
Full Text: DOI
References:
[1] De Vries, B.; Principle, J. C.: The gamma model --- a new neural model for temporal precesing. Neural networks 5, 565-576 (1992)
[2] Gopalsamy, K.: Stability and oscillations in delay differential equations of populations dynamics. (1992) · Zbl 0752.34039
[3] Gopalsamy, K.; He, X.: Stability in asymmetric Hopfield networks with transmission delays. Physica D 76, 344-358 (1994) · Zbl 0815.92001
[4] Gopalsamy, K.; He, X.: Delay-independent stability in bi-directional associative memory networks. IEEE trans. Neural networks 5, 998-1002 (1994)
[5] Hale, J.; Lenel, S. V.: Introduction to functional differential equations. (1993)
[6] Liao, X. F.; Chen, G.: Hopf bifurcation and chaos analysis of Chen’s system with distributed delays. Chaos, solitons fractals 25, No. 1, 11-23 (2005) · Zbl 1080.34055
[7] Liao, X. F.; Chen, G.; Sanchez, E. N.: Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural networks 15, 855-866 (2002)
[8] Liao, X. F.; Chen, G.; Sanchez, E. N.: LMI-based approach for asymptotically stability analysis of delayed neural networks. IEEE trans. Circuits systems-I 49, 1033-1039 (2002)
[9] Liao, X. F.; Li, C. D.: An LMI approach to asymptotical stability of multi-delayed neural networks. Phys. D 200, No. 1 -- 2, 139-155 (2005) · Zbl 1078.34052
[10] Liao, X. F.; Li, S. W.; Chen, G.: Bifurcation analysis on a two-neuron system with distributed delays in the frequency domain. Neural networks 17, No. 4, 545-561 (2004) · Zbl 1073.68715
[11] Liao, X. F.; Li, C. G.; Wong, K. W.: Criteria for exponential stability of Cohen -- Grossberg neural networks. Neural networks 17, 1401-1414 (2004) · Zbl 1073.68073
[12] Liao, X. F.; Wong, K. W.: Robust stability of interval bi-directional associative memory neural networks with time delays. IEEE trans. Man cybernetics 34, No. 2, 1141-1154 (2004)
[13] Liao, X. F.; Wong, K. W.; Leung, C. S.; Wu, Z. F.: Hopf bifurcation and chaos in a single delayed neuron equation with nonmonotonic activation function. Chaos, solitons fractals 21, 1535-1547 (2001) · Zbl 1012.92005
[14] Liao, X. F.; Wong, K. W.; Li, C. G.: Global exponential stability for a class of generalized neural networks with distributed delays. Nonlinear anal.: real world appl. 5, 527-547 (2004) · Zbl 1094.34053
[15] Liao, X. F.; Wong, K. W.; Wu, Z. F.: Bifurcation analysis in a two-neuron system with distributed delays. Physica D 149, 123-141 (2001) · Zbl 0982.34059
[16] Liao, X. F.; Wong, K. W.; Wu, Z. F.: Asymptotic stability criteria for a two-neuron network with different time delays. IEEE trans. Neural networks 14, No. 1, 222-227 (2003)
[17] Liao, X. F.; Wong, K. W.; Wu, Z. F.; Chen, G.: Novel robust stability criteria for interval delayed Hopfield neural networks with time delays. IEEE tran. Systems I 48, 1355-1359 (2001) · Zbl 1006.34071
[18] Liao, X. F.; Wong, K. W.; Yang, S. Z.: Stability analysis for delayed cellular neural networks based on linear matrix inequality approach. Int. J. Bifurcation chaos. 14, No. 9, 3377-3384 (2004) · Zbl 1067.34081
[19] Liao, X. F.; Wu, Z. F.; Yu, J. B.: Stability switches and bifurcation analysis of a neural network with continuously delay. IEEE trans. Syst. man cybernetics 29, 692-696 (1999)
[20] Liao, X. F.; Yu, J. B.: Robust interval stability analysis of Hopfield networks with time delays. IEEE trans. Neural networks 9, 1042-1045 (1998)
[21] Liao, X. F.; Yu, J. B.; Chen, G.: Novel stability conditions for cellular neural networks with time delays. Int. J. Bifurcation chaos 11, No. 7, 1853-1864 (2001)
[22] Macdonald, N.: Time lags in biological models, lecture notes in biomathematics. 27 (1978) · Zbl 0403.92020
[23] May, R. M.: Stability and complexity in model ecosystems. (1974)
[24] Pakdaman, K.; Malta, C. P.: Transient oscillations in continuous-time excitatory ring neural networks with delay. Phys. rev. E 55, 3234-3248 (1997)
[25] Zhang, Qiang; Wei, Xiaopeng; Xu, Jin: Delay-dependent exponential stability of cellular neural networks with time-varying delays. Chaos, solitons fractals 23, No. 4, 1363-1369 (2005) · Zbl 1094.34055
[26] Li, Shaowen; Liao, X. F.; Li, C. G.: Hopf bifurcation in a Volterra prey -- predator model with strong kernel. Chaos, solitons fractal 22, No. 3, 713-722 (2004) · Zbl 1073.34086
[27] Tank, D. W.; Hopfield, J. J.: Neural computational by concentrating information in time. Proc. natl. Acad. sci. 84, 1896-1991 (1987)
[28] Tu, F. H.; Liao, X. F.: Estimation of exponential convergence rate and exponential stability for neural networks with time-varying delay. Chaos, solitons fractals 26, No. 5, 1499-1505 (2005) · Zbl 1075.92004
[29] Tu, F. H.; Liao, X. F.: Harmless delays for global asymptotic stability of Cohen -- Grossberg neural networks. Chaos, solitons fractals 26, No. 3, 927-933 (2005) · Zbl 1088.34064
[30] Den Driessche, P. Van; Zou, X.: Global attractivity in delayed Hopfield neural networks model. SIAM J. Appl. math. 58, 1878-1890 (1998) · Zbl 0917.34036