zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential stability in functional dynamic equations on time scales. (English) Zbl 1194.34173
Summary: We are interested in the exponential stability of the zero solution of a functional dynamic equation on a time scale, a nonempty closed subset of real numbers. The approach is based on suitable Lyapunov functionals and certain inequalities. We apply our results to obtain exponential stability in Volterra integrodynamic equations on time scales.

MSC:
34N05Dynamic equations on time scales or measure chains
34K20Stability theory of functional-differential equations
Keywords:
time scales
WorldCat.org
Full Text: Euclid
References:
[1] M. Ad\ivar and Y. Raffoul, Existence results for periodic solutions of integro-dynamic equations on time scales. Annali di Mathematica, DOI 10.1007/s1023-008-0088-z . · Zbl 1195.34138
[2] S. Bodine and D. A. Lutz, Exponential functions on time scales: Their asymptotic behavior and calculation. Dynam. Systems Appl. 12 (2003), pp 23-43. · Zbl 1053.39029
[3] E. Ak\in-Bohner, M. Bohner and F. Ak\in, Pachpatte inequalities on time scales. JIPAM. J. Inequal. Pure Appl. Math. 6(1) (2005), pp 1-23. · Zbl 1086.34014 · eudml:125938
[4] E. Ak\in-Bohner, and Y. Raffoul, Boundeness in functional dynamic equations on time scales. Adv. Difference Equ. 2006 2006, pp 1-18. · Zbl 1139.39005 · doi:10.1155/ADE/2006/79689 · eudml:54213
[5] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications , Birkhäuser, Boston, 2001. · Zbl 0978.39001
[6] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales , Birkhäuser, Boston, 2003. · Zbl 1025.34001
[7] M. Bohner and Y. Raffoul, Volterra Dynamic Equations on Time Scales. · Zbl 1139.39005
[8] A. Peterson and Y. Raffoul, Exponential stability of dynamic equations on time scales. Adv. Difference Equ. 2 (2005), pp 133-144. · Zbl 1100.39013 · doi:10.1155/ADE.2005.133 · eudml:52829
[9] A. Peterson and C. C. Tisdell, Boundedness and uniqueness of solutions to dynamic equations on time scales. J. Diff. Equations Appl. 10 No. 13-15 (2004), pp 1295-1306. · Zbl 1072.39017 · doi:10.1080/10236190410001652793
[10] C. Poetzsche, Chain rule and invariance principle on measure chains. Dynamic equations on time scales. J. Comput. Appl. Math., 141, No. 1-2 (2002), pp 249-254. · Zbl 1011.34045 · doi:10.1016/S0377-0427(01)00450-2
[11] Y. Raffoul, Boundedness in nonlinear functional differential equations with applications to volterra integrodifferential. J. Integral Equations Appl. 16, No. 4 , Winter 2004. · Zbl 1090.34056 · doi:10.1216/jiea/1181075297
[12] Y. Raffoul, Boundedness in Nonlinear Differential Equations. Nonlinear Stud. 10 (2003), pp 343-350. · Zbl 1050.34046