zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a class of physically important integrable equations. (English) Zbl 1194.35363
Summary: A methodology introduced by Fuchssteiner and the author is used to derive a class of physically important integrable evolution equations. Among these equations are integrable generalizations of the Korteweg-deVries (KdV), of the modified KdV, of the nonlinear Schrödinger (NLS), and of the sine-Gordon equations. The modeling of water waves, as well as general asymptotic considerations, are used to illustrate the occurrence of the generalized modified KdV and NLS equations, respectively.

35Q53KdV-like (Korteweg-de Vries) equations
35Q55NLS-like (nonlinear Schrödinger) equations
Full Text: DOI
[1] Kodama, Y.; Taniuti, T.: J. phys. Soc. Japan. 45, 298 (1978)
[2] Calogero, F.: Why are certain nonlinear pdes both widely applicable and integrable. What is integrability (1992) · Zbl 0808.35001
[3] Fokas, A. S.; Zakharov, V. E.:. (1993)
[4] Gel’fand, I. M.; Dorfman, I.: Funct. anal. Appl.. 14, 71 (1980)
[5] Fokas, A. S.; Fuchssteiner, B.: Lett. nuovo cimento. 28, 299 (1980)
[6] Fuchssteiner, B.; Fokas, A. S.: Physica D. 4, 47 (1981)
[7] Fuchssteiner, B.: Prog. theor. Phys.. 65, 861 (1981)
[8] Holm, D.; Camassa, R.: Phys. rev. Lett.. 71, 1671 (1993)
[9] Fokas, A. S.; Santini, P. M.: An inverse acoustic problem and linearization of moderate amplitude dispersive waves. (1994)
[10] Fokas, A. S.; Liu, Q. M.: Asymptotic integrability of water waves. (1994) · Zbl 0982.76511
[11] Rosenau, P.: Phys. rev. Lett.. (1994)
[12] Whitham, G. B.: Linear and nonlinear waves. (1974) · Zbl 0373.76001
[13] Benjamin, T. B.; Bona, J. L.; Mahony, J. J.: Phil. trans. Roy. soc. A. 272, 47 (1972)
[14] Kodama, Y.: Phys. lett. A. 112, 193 (1985)