zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Viscosity approximation methods for a common fixed point of finite family of nonexpansive mappings. (English) Zbl 1194.47089
Summary: Let $K$ be a nonempty closed and convex subset of a real Banach space $E$. Let $T\:K\to E$ be a nonexpansive weakly inward mapping with nonempty fixed point set $\mathrm{Fix}(T)$ and $f\:K\to K$ be a contraction. Then, for $t\in(0,1)$, there exists a sequence $\{y_t\}\subset K$ satisfying $$y_t=(1-t)f(y_t)+tT(y_t).$$ If $E$ is a strictly convex real reflexive Banach space having a uniformly Gâteaux differentiable norm, then $\{y_t\}$ converges strongly to a fixed point $p$ of $T$ such that $p$ is the unique solution in $F(T)$ to a certain variational inequality. Moreover, if $\{T_i\}_{i=1}^r$ is a family of nonexpansive mappings, then an explicit iteration process which converges strongly to a common fixed point of $\{T_i\}_{i=1}^r$ and to a solution of a certain variational inequality is constructed. In the above setting, the family $\{T_i\}_{i=1}^r$ is not required to satisfy the condition $$\bigcap_{i=1}^r\mathrm{Fix}(T_i)=\mathrm{Fix}(T_rT_{r-1}\cdots T_1)= \mathrm{Fix}(T_1 T_r\cdots T_2)= \cdots=\mathrm{Fix}(T_{r-1}T_{r-2} \cdots T_1T_r).$$

MSC:
47J25Iterative procedures (nonlinear operator equations)
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47H09Mappings defined by “shrinking” properties
WorldCat.org
Full Text: DOI
References:
[1] Bauschke, H. H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert spaces. J. math. Anal. appl. 202, 150-159 (1996) · Zbl 0956.47024
[2] Chidume, C. E.; Zegeye, H.; Prempeh, E.: Strong convergence theorems for a common fixed point of a finite family of nonexpansive mappings. Comm. appl. Nonlinear anal. 11, 25-32 (2004) · Zbl 1080.47050
[3] Chidume, C. E.; Zegeye, H.; Shahzad, N.: Convergence theorems for a common fixed point of a finite family of nonself nonexpansive mappings. Fixed point theor. Appl. 2005, No. 2, 233-241 (2005) · Zbl 1106.47054
[4] Cioranescu, I.: Geometry of Banach spaces, duality mappings and nonlinear problems. (1990) · Zbl 0712.47043
[5] Kirk, W. A.: On successive approximations for nonexpansive mappings in Banach spaces. Glasgow math. J. 12, 6-9 (1971) · Zbl 0223.47024
[6] Lim, T. C.: A fixed point theorem for weakly inward multivalued contractions. J. math. Anal. appl. 247, 323-327 (2000) · Zbl 0957.47040
[7] Lions, P. L.: Approximation de points fixes de contractions. C. R. Acad. sci. Paris, ser. A 284, 1357-1359 (1977) · Zbl 0349.47046
[8] Liu, G.; Lei, D.; Li, S.: Approximating fixed points of nonexpansive mappings. Int. J. Math. math. Sci. 24, 173-177 (2000) · Zbl 0966.47035
[9] Maiti, M.; Saha, B.: Approximating fixed points of nonexpansive and generalized nonexpansive mappings. Int. J. Math. math. Sci. 16, 81-86 (1993) · Zbl 0774.47032
[10] Megginson, R. E.: An introduction to Banach space theory. (1998) · Zbl 0910.46008
[11] Morales, C. H.; Jung, J. S.: Convergence of paths for pseudocontractive mappings in Banach spaces. Proc. am. Math. soc. 128, 3411-3419 (2000) · Zbl 0970.47039
[12] Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. math. Anal. appl. 75, 287-292 (1980) · Zbl 0437.47047
[13] Senter, H. F.; Jr., W. G. Dotson: Approximating fixed points of nonexpansive mappings. Proc. am. Math. soc. 44, 375-380 (1974) · Zbl 0299.47032
[14] Song, Y.; Chen, R.: Strong convergence theorems on an iterative method for a family of finite nenexpansive mappings. Appl. math. Comput. 180, 275-287 (2006) · Zbl 1139.47050
[15] Shioji, S.; Takahashi, W.: Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces. Proc. am. Math. soc. 125, 3641-3645 (1997) · Zbl 0888.47034
[16] Takahashi, W.; Ueda, Y.: On reich’s strong convergence theorems for resolvents of accretive operators. J. math. Anal. appl. 104, 546-553 (1984) · Zbl 0599.47084
[17] Takahashi, W.; Tamura, T.; Toyoda, M.: Approximation of common fixed points of a family of finite nonexpansive mappings in Banach spaces. Sci. math. Jpn. 56, 475-480 (2002) · Zbl 1026.47042
[18] Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. math. (Basel) 58, 486-491 (1992) · Zbl 0797.47036
[19] Xu, H. K.: Iterative algorithms for nonlinear operators. J. London math. Soc. 66, 240-256 (2002) · Zbl 1013.47032
[20] Xu, H. K.: Viscosity approximation methods for nonexpansive mappings. J. math. Anal. appl. 298, 279-291 (2004) · Zbl 1061.47060
[21] Xu, H. K.: Strong convergence of an iterative method for nonexpansive and accretive operators. J. math. Anal. appl. 314, 631-643 (2006) · Zbl 1086.47060
[22] Zhou, H.; Wei, L.; Cho, Y. J.: Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings in reflexive Banach spaces. Appl. math. Comput. 173, 196-212 (2006) · Zbl 1100.65049