Matveev, M. V.; Bonanzinga, M.; Pareek, C. M. Some remarks on generalizations of countably compact spaces and Lindelöf spaces. (English) Zbl 1194.54008 Rend. Circ. Mat. Palermo (2) 51, No. 1, 163-174 (2002). Summary: We prove some propositions and present some examples concerning the properties between countably compact and pseudocompact and the properties between Lindelöf and pseudo-Lindelöf. MSC: 54A25 Cardinality properties (cardinal functions and inequalities, discrete subsets) 54D20 Noncompact covering properties (paracompact, Lindelöf, etc.) 54D30 Compactness 54D65 Separability of topological spaces Keywords:countably compact; Lindelöf; separable; starcompact; star–Lindelöf; \(n\)–star–Lindelöf; almost starcompact; almost star–Lindelöf; DFCC spaces; DCCC spaces PDF BibTeX XML Cite \textit{M. V. Matveev} et al., Rend. Circ. Mat. Palermo (2) 51, No. 1, 163--174 (2002; Zbl 1194.54008) Full Text: DOI References: [1] A. V. Arhangel’skii,Compactness, Contemporary Problems in Mathematics. Fundamental Directions. General Topology — 2 Moscow, WINITI Publ. (1989) 5-128 (in Russian);English translation: Encyclopedia of Mathematical Sciences. General Topology II, Springer 1996. [2] Bagley, R. W.; Connel, E. H.; McKnight, J. D., On properties characterizing pseudo-compact spaces, Proc. Amer. Math. Soc., 9, 500-506 (1958) · Zbl 0089.17601 [3] Bonanzinga, M., Star-Lindelöf and absolutely star-Lindelöf spaces, Q & A in Gen. Topol., 16, 2, 79-104 (1998) · Zbl 0931.54019 [4] Bonanzinga, M.; Matveev, M. V., Centered-Lindelöfness versus star-Lindelöfness, Comment. Math. Univ. Carolinae, 41, 1, 111-122 (2000) · Zbl 1037.54502 [5] Bonanzinga, M.; Matveev, M. V., Closed subspaces of star-Lindelöf and related spaces, East-West J. of Mathematics, 2, 2, 171-179 (2000) · Zbl 0997.54035 [6] Dai, Mu-ming, A topological space cardinality inequality involving the * Lindelöf number, Acta Math. Sinica, 26, 731-735 (1983) · Zbl 0539.54003 [7] E. K. van Douwen,The Pixley-Roy topology on spaces of subsets, Set-Theoretic Topology, G. M. Reed ed., N.Y. (1977) 111-134. · Zbl 0372.54006 [8] van Douwen, E. K.; Reed, G. M.; Roscoe, A. W.; Tree, I. J., Star covering properties, Topology and Appl., 39, 71-103 (1991) · Zbl 0743.54007 [9] A. G. El’kin,On one condition similar to countable compactness, Abstracts of Leningrad 1982 International Topological Conference, 38. [10] R. Engelking,General Topology, Warszawa, 1977. [11] Fleishman, W. M., A new extension of countable compactness, Fund. Math., 67, 1-9 (1970) · Zbl 0194.54601 [12] Frolik, Z., Generalizations of compactness and Lindelöf property, Czech. Math. J., 9, 84, 172-217 (1959) · Zbl 0098.14201 [13] Ikenaga, S., A class which contains Lindelöf spaces, separable spaces and countably compact spaces, Memories of Numazu College of Technology, 18, 105-108 (1983) [14] Ikenaga, S., Some prperties of ω-n-star spaces, Research Reports of Nara National College of Technology, 23, 52-57 (1987) [15] Ikenaga, S., Topological concept between Lindelöf and Pseudo-Lindelöf, Research Reports of Nara National College of Technology, 26, 103-108 (1990) [16] Ikenaga, S.; Tani, T., On a topological concept between countable compactness and pseudocompactness, Research Reports of Numazu Technical College, 15, 139-141 (1980) [17] Kombarov, A. P., On expandable discrete collections, Topol. and Appl., 69, 283-292 (1996) · Zbl 0865.54018 [18] M. V. Matveev,On properties similar to countable compactness and pseudocompactness, Vestnik MGU, Ser. Mat., Mekh., (1984) No 2, 24-27 (in Russian); English transl.: Moscow Univ. Math. Bull. · Zbl 0556.54016 [19] Matveev, M. V., Closed embeddings into pseudocompact spaces, Mat. Zametki, 41, 377-394 (1987) [20] M. V. Matveev,Pseudocompact and Related Spaces, Thesis, Moscow State University (1985). [21] M. V. Matveev,A survey on star covering properties, Topology Atlas, Preprint No 330. [22] Pareek, C. M., Some generalizations of Lindelöf spaces and hereditarily Lindelöf spaces, Q & A in Gen. Topol., 2, 131-142 (1984) · Zbl 0542.54020 [23] Pareek, C. M., On some generalizations of countably compact and Lindelöf spaces, Suppl. Rend. Circ. Mat. di Palermo, Ser II, 24, 169-192 (1990) · Zbl 0727.54010 [24] Scott, B. M., Pseudocompact, metacompact spaces are compact, Topology Proceedings, 4, 577-587 (1979) · Zbl 0449.54020 [25] Tree, I. J., Constructing regular 2-starcompact spaces that are not strongly 2-starLindelöf, Topol. and Appl., 47, 129-132 (1992) · Zbl 0766.54020 [26] Vaughan, J. E., Discrete sequences of points, Topology Proceedings, 3, 237-265 (1978) · Zbl 0407.54013 [27] J. E. Vaughan,Countably compact and sequentially compact spaces, Handbook of Settheoretic Topology, K. Kunen and J. E. Vaughan Eds., North Holland (1984) 570-602. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.