×

Residually free 3-manifolds. (English) Zbl 1194.57005

Summary: We classify those compact 3-manifolds with incompressible toral boundary whose fundamental groups are residually free. For example, if such a manifold \(M\) is prime and orientable and the fundamental group of \(M\) is nontrivial then \(M\cong\Sigma\times S^1\), where \(\Sigma\) is a surface.

MSC:

57M05 Fundamental group, presentations, free differential calculus
20E26 Residual properties and generalizations; residually finite groups
57N10 Topology of general \(3\)-manifolds (MSC2010)
20E05 Free nonabelian groups
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] B Baumslag, Residually free groups, Proc. London Math. Soc. \((3)\) 17 (1967) 402 · Zbl 0166.01502
[2] J A Behrstock, W D Neumann, Quasi-isometric classification of graph manifold groups, Duke Math. J. 141 (2008) 217 · Zbl 1194.20045
[3] M Bestvina, M Feighn, Notes on Sela’s work: Limit groups and Makanin-Razborov diagrams, to appear in “Geometry and cohomology in group theory (Durham, 2003)” · Zbl 1213.20039
[4] M Bridson, J Howie, C F III, H Short, Subgroups of direct products of limit groups, to appear in Ann. of Math. \((2)\) · Zbl 1196.20047
[5] M R Bridson, H Wilton, Subgroup separability in residually free groups, Math. Z. 260 (2008) 25 · Zbl 1158.20013
[6] G Duchamp, D Krob, The lower central series of the free partially commutative group, Semigroup Forum 45 (1992) 385 · Zbl 0814.20025
[7] M Hall Jr., Subgroups of finite index in free groups, Canadian J. Math. 1 (1949) 187 · Zbl 0031.34001
[8] J Hempel, Residual finiteness for \(3\)-manifolds, Ann. of Math. Stud. 111, Princeton Univ. Press (1987) 379 · Zbl 0772.57002
[9] W H Jaco, P B Shalen, Seifert fibered spaces in \(3\)-manifolds, Mem. Amer. Math. Soc. 21 (1979) · Zbl 0415.57005
[10] K Johannson, Homotopy equivalences of \(3\)-manifolds with boundaries, Lecture Notes in Math. 761, Springer (1979) · Zbl 0412.57007
[11] O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998) 472 · Zbl 0904.20016
[12] O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998) 517 · Zbl 0904.20017
[13] R C Lyndon, The equation \(a^2b^2=c^2\) in free groups, Michigan Math. J 6 (1959) 89 · Zbl 0084.02803
[14] R C Lyndon, P E Schupp, Combinatorial group theory, Ergebnisse der Math. und ihrer Grenzgebiete 89, Springer (1977) · Zbl 0368.20023
[15] W D Neumann, G A Swarup, Canonical decompositions of \(3\)-manifolds, Geom. Topol. 1 (1997) 21 · Zbl 0886.57009
[16] V N Remeslennikov, \(\exists\)-free groups, Sibirsk. Mat. Zh. 30 (1989) 193 · Zbl 0724.20025
[17] G P Scott, Finitely generated \(3\)-manifold groups are finitely presented, J. London Math. Soc. \((2)\) 6 (1973) 437 · Zbl 0254.57003
[18] P Scott, The geometries of \(3\)-manifolds, Bull. London Math. Soc. 15 (1983) 401 · Zbl 0561.57001
[19] Z Sela, Diophantine geometry over groups: a list of research problems, Preprint · Zbl 1285.20042
[20] Z Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes √Čtudes Sci. (2001) 31 · Zbl 1018.20034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.