zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A generalized distance and enhanced Ekeland’s variational principle for vector functions. (English) Zbl 1194.58014
Summary: We propose a definition of lower closed transitive relations and prove the existence of minimal elements for such a relation. This result is shown to contain probably a large part of existing versions of Ekeland’s variational principle (EVP). We introduce the notion of a weak $\tau $-function $p$ as a generalized distance and use it together with the above result on minimal elements to establish enhanced EVP for various settings, under relaxed lower semicontinuity assumptions. These principles conclude the existence not only of $p$-strict minimizers of $p$-perturbations of the considered vector function, but also $p$-sharp and $p$-strong minimizers. Our results are proved to be stronger than the classical EVP and many generalizations in the literature, even in the usual one-dimensional case, by numerous corollaries and examples. We include equivalent formulations of our enhanced EVP as well.

58E30Variational principles on infinite-dimensional spaces
65K10Optimization techniques (numerical methods)
49J53Set-valued and variational analysis
90C48Programming in abstract spaces
Full Text: DOI
[1] Ekeland, I.: On the variational principle, J. math. Anal. appl. 47, 324-353 (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[2] Gutiérrez, C.; Jimener, B.; Novo, V.: A set-valued Ekeland’s variational principle in vector optimization, SIAM J. Control optim. 47, 883-903 (2008) · Zbl 1157.49025 · doi:10.1137/060672868
[3] Kada, O.; Suzuki, T.; Takahashi, W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. jpn. 44, 381-391 (1996) · Zbl 0897.54029
[4] Park, S.: On generalizations of the Ekeland-type variational principles, Nonlinear anal. 39, 881-889 (2000) · Zbl 1044.49500 · doi:10.1016/S0362-546X(98)00253-3
[5] Lin, L. J.; Du, W. S.: Some equivalent formulations of generalized Ekeland’s variational principle and their applications, Nonlinear anal. 67, 187-199 (2007) · Zbl 1111.49013 · doi:10.1016/j.na.2006.05.006
[6] Tataru, D.: Viscosity solutions of Hamilton--Jacobi equations with unbounded nonlinear terms, J. math. Anal. appl. 163, 345-392 (1992) · Zbl 0757.35034 · doi:10.1016/0022-247X(92)90256-D
[7] Suzuki, T.: Generalized distances and existence theorems in the complete metric space, J. math. Anal. appl. 253, 440-458 (2001) · Zbl 0983.54034 · doi:10.1006/jmaa.2000.7151
[8] Lin, L. J.; ; Du, W. S.: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces, J. math. Anal. appl. 323, 360-370 (2006) · Zbl 1101.49022 · doi:10.1016/j.jmaa.2005.10.005
[9] P.Q. Khanh, D.N. Quy, On generalized Ekeland’s variational principle for approximate Pareto minima of set-valued mappings, J. Optim. Theory Appl. (in press). · Zbl 1247.90237
[10] Khanh, P. Q.: On caristi--kirk’s theorem and Ekeland’s variational principle for Pareto extrema, Bull. Polish acad. Sci. 37, 33-39 (1989) · Zbl 0767.47039
[11] Bednarcruk, E. M.; Przybyla, M. J.: The vector-valued variational principle in Banach spaces ordered by cone with nonempty interiors, SIAM J. Optim. 18, 907-913 (2007) · Zbl 1144.58012 · doi:10.1137/060658989
[12] Ansari, Q. H.: Vectorial forms of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory, J. math. Anal. appl. 334, 561-575 (2007) · Zbl 1127.49015 · doi:10.1016/j.jmaa.2006.12.076
[13] Bianchi, M.; Kassay, G.; Pini, R.: Existence of equilibria via Ekeland’s principle, J. math. Anal. appl. 305, 502-512 (2005) · Zbl 1061.49005 · doi:10.1016/j.jmaa.2004.11.042
[14] Bianchi, M.; Kassay, G.; Pini, R.: Ekeland’s principle for vector equilibrium problems, Nonlinear anal. 66, 1454-1464 (2007) · Zbl 1110.49007 · doi:10.1016/j.na.2006.02.003
[15] Göpfert, A.; Tammer, Chr.; Zălinescu, C.: On the vectorial Ekeland’s variational principle and minimal points in product spaces, Nonlinear anal. 39, 909-922 (2000) · Zbl 0997.49019 · doi:10.1016/S0362-546X(98)00255-7
[16] Lin, L. J.; Du, W. S.: On maximal element theorems, variants of Ekeland’s variational principle and their applications, Nonlinear anal. 68, 1246-1262 (2008) · Zbl 1133.58006 · doi:10.1016/j.na.2006.12.018
[17] Chen, Y.; Cho, Y. J.; Yang, L.: Note on the results with lower semicontinuity, Bull. korean math. Soc. 39, 535-541 (2002) · Zbl 1040.49016 · doi:10.4134/BKMS.2002.39.4.535
[18] P.Q. Khanh, D.N. Quy, On generalized Ekeland’s variational principle and equivalent formulations for set-valued mappings, J. Global Optim., Online first 2010. · Zbl 1216.49018
[19] Göpfert, A.; Riahi, H.; Tammer, Chr.; Zălinescu, C.: Variational methods in partially ordered spaces, (2003)
[20] Giannessi, F.: Constrained optimization and image space analysis, Separation of sets and optimality conditions 1 (2005) · Zbl 1082.49001
[21] Bao, T. Q.; Khanh, P. Q.: Are several recent generalizations of Ekeland’s variational principle more general than the original principle?, Acta math. Vietnam 28, 345-350 (2003) · Zbl 1083.49020
[22] Khanh, P. Q.; Tuan, N. D.: Optimality conditions for nonsmooth multiobjective optimization using Hadamard directional derivatives, J. optim. Theory appl. 133, 341-357 (2007) · Zbl 1149.90134 · doi:10.1007/s10957-007-9169-1
[23] Khanh, P. Q.; Tuan, N. D.: First and second-order approximations as derivatives of mappings in optimality conditions for nonsmooth vector optimization, Appl. math. Optim. 58, 147-166 (2008) · Zbl 1162.49026 · doi:10.1007/s00245-008-9049-6
[24] Phelps, R.: Support cones in Banach spaces and their applications, Adv. math. 13, 1-19 (1974) · Zbl 0284.46015 · doi:10.1016/0001-8708(74)90062-0