×

zbMATH — the first resource for mathematics

A probability density function estimation using F-transform. (English) Zbl 1194.62030
Summary: The aim of this paper is to propose a new approach to probability density function (PDF) estimation which is based on the fuzzy transform (F-transform) introduced by I. Perfilieva [Fuzzy Sets Syst. 157, No. 8, 993–1023 (2006; Zbl 1092.41022)]. Firstly, a smoothing filter based on the combination of the discrete direct and continuous inverse F-transform is introduced and some of the basic properties are investigated. Next, an alternative approach to PDF estimation based on the proposed smoothing filter is established and compared with the most used method of E. Parzen windows [Ann. Math. Stat. 33, 1065–1076 (1962; Zbl 0116.11302)]. Such an approach can be of a great value, mainly when dealing with financial data, i.e., large samples of observations.

MSC:
62G07 Density estimation
62G86 Nonparametric inference and fuzziness
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] Ahalt, S. C., Krishnamurthy, A. K., Chen, P. K., Melton, D. E.: Competative learning algorithms for vector quantization. Neural Networks 4 (1993), 3, 277 - 290.
[2] Assenza, A., Valle, M., Verleysen, M.: A comparative study of various probabilty density estimation methods for data analysis. Internat. J. Comput. Intell. Systems 1 (2009), 2, 188-201.
[3] Fan, J., Yao, Q.: Nonlinear Time Series: Nonparametric and Parametric Methods. (Springer Series in Statistics.) Springer-Verlag, Berlin 2005. · Zbl 1014.62103
[4] Härdle, W., Müller, M., Sperlich, S., Werwatz, A.: Nonparametric and Semiparametric Models. Springer-Verlag, New York 2004. · Zbl 1059.62032
[5] Kostelich, E. J., Yorke, J. A.: Noise reduction: Finding the simplest dynamical system consistent with the data. Physica D 41 (1990), 183-196. · Zbl 0705.58036
[6] Kuo, Hui-Hsiung: White Noise Distribution Theory. CRC Press, 1996. · Zbl 0853.60001
[7] McLachlan, G. J., Peel, D.: Finite Mixture Models. Wiley, New York 2000. · Zbl 0963.62061
[8] Nachtegael, M., Weken, D. Van der, Ville, D. Van De, Kerre, E. E.: Fuzzy Filters for Image Processing. (Studies in Fuzziness and Soft Computing.) Springer-Verlag, 2003. · Zbl 1020.68100
[9] Parzen, E.: On estimation of a probabilty density function and mode. Ann. Math. Statist. 33 (1962), 1065-1076. · Zbl 0116.11302
[10] Perfilieva, I.: Fuzzy transforms: Theory and applications. Fuzzy Sets and Systems 157 (2006), 8, 993-1023. · Zbl 1092.41022
[11] Perfilieva, I., Valášek, R.: Fuzzy transforms in removing noise. Innovation in Hybrid Intelligent Systems. Springer-Verlag, Berlin - Heidelberg 2005.
[12] Silverman, B. W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, London 1986. · Zbl 0617.62042
[13] Simonoff, J. S.: Smoothing Methods in Statistics. Springer-Verlag, New York 1996. · Zbl 0859.62035
[14] Stefanini, L.: Fuzzy transforms and smooth function. Proc. IFSA/EUSFLAT 2009, Lisabon 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.