zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An analysis of the temperature field of the workpiece in dry continuous grinding. (English) Zbl 1194.74053
Summary: The recent model for heat transfer during intermittent grinding described in [{\it D. L. Skuratov} et al., Appl. Math. Modelling 31, No. 6, 1039--1047 (2007; Zbl 1153.80002)] is considered. This model is particularized to the case of continuous dry grinding, where an alternative solution is obtained in the steady state. This alternative solution is analytically equivalent to the well-known formula of {\it J. C. Jaeger} [J. Proc. R. Soc. N S W 76, 204--224 (1942)] for the steady-state temperature field created by an infinite moving source of heat and proves to be very useful for evaluating the maximum point of the temperature.

74F05Thermal effects in solid mechanics
74M15Contact (solid mechanics)
Full Text: DOI
[1] Andrews KT, Shillor M, Wright S (1999) A model for heat transfer in grinding. Nonlinear Anal 35: 233--246 · Zbl 0947.74040 · doi:10.1016/S0362-546X(98)00011-X
[2] Gu RJ, Shillor M, Barber GC, Jen T (2004) Thermal analysis of the grinding process. Math Comput Model 39: 991--1003 · Zbl 1112.74371 · doi:10.1016/S0895-7177(04)90530-4
[3] Jen T-C, Lavine AS (1995) A variable heat flux model of heat transfer in grinding: model development. ASME J Heat Transf 117: 473--478 · doi:10.1115/1.2822546
[4] Skuratov D, Ratis Y, Selezneva I, Pérez J, Fernández de Córdoba P, Urchueguía J (2007) Mathematical modelling and analytical solution for workpiece temperature in grinding. Appl Math Model 31: 1039--1047 · Zbl 1153.80002 · doi:10.1016/j.apm.2006.03.023
[5] Lavine AS, Jen T-C (1991) Coupled heat transfer to workpiece, wheel, and fluid in grinding, and the occurrence of workpiece burn. Int J Heat Mass Transf 34: 983--992 · doi:10.1016/0017-9310(91)90009-4
[6] Pérez J, Hoyas S, Skuratov D, Ratis Y, Selezneva I, Fernández de Córdoba P, Urchueguía J (2008) Heat transfer analysis of intermittent grinding processes. Int J Heat Mass Transf 51: 4132--4138 · Zbl 1148.80336 · doi:10.1016/j.ijheatmasstransfer.2007.11.043
[7] Jaeger JC (1942) Moving sources of heat and the temperature at sliding contacts. Proc R Soc NSW 76: 204--224
[8] Malkin S (1989) Grinding technology: theory and applications of machining with abrasives. Ellis Horwood Limited, England
[9] Abramowitz M, Stegun I (1972) Handbook of mathematical functions. NBS Applied Mathematics Series 55, Washington · Zbl 0543.33001
[10] González--Santander J (2008) Master’s thesis, Universidad Politécnica de Valencia
[11] Conway J (2001) Functions of one complex variable I. Springer Graduate Texts in Mathematics, New York
[12] Lebedev N (1965) Special functions and their applications. Dover, New York · Zbl 0131.07002
[13] Guo C, Malkin S (1992) Analysis of fluid flow through the grinding zone. J Eng Ind 114: 427 · doi:10.1115/1.2900694