zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A FEM-BEM coupling procedure to model the propagation of interacting acoustic-acoustic/acoustic-elastic waves through axisymmetric media. (English) Zbl 1194.74479
Summary: In the present work the propagation of waves through axisymmetric bodies is analysed, taking into account acoustic-acoustic/acoustic-elastic interacting media and coupled numerical methodologies. The boundary element method (BEM) is here employed to model acoustic media: its time convolution integrals are evaluated analytically and the theta method is adopted to advance the solution on time. The finite element method (FEM), on the other hand, models wave propagation through elastic and acoustic media, the Newmark Method being employed for time stepping. The FEM-BEM coupling is accomplished through an iterative process in which variables at common interfaces are updated until convergence is achieved. Thus, each sub-domain is analysed independently, so that the numerical algorithm can take full advantage of the favourable features of the different methods involved. Relaxation parameters, which are introduced in order to speed up and/or ensure convergence, and the possibility to consider different time steps within each sub-domain are two factors that improve substantially the efficiency, stability, accuracy and flexibility of the coupled analysis. The potentialities of the proposed procedures are illustrated through numerical examples presented at the end of the paper.

74S05Finite element methods in solid mechanics
74S15Boundary element methods in solid mechanics
74J10Bulk waves (solid mechanics)
74F10Fluid-solid interactions
76Q05Hydro- and aero-acoustics
Full Text: DOI
[1] D. Soares Jr., Dynamic analysis of nonlinear soil -- fluid -- structure coupled systems by the finite element method and the boundary element method, Ph.D. Thesis, COPPE/UFRJ, Brazil, 2004 (in Portuguese).
[2] Zienkiewicz, O. C.; Taylor, R. L.: The finite element method, The finite element method 1 (2002) · Zbl 0991.74002
[3] Bathe, K. J.: Finite element procedures, (1996) · Zbl 0994.74001
[4] Hughes, T. J. R.: The finite element method -- linear static and dynamic finite element analysis, (2000) · Zbl 1191.74002
[5] Belytschko, T.; Liu, W. K.; Moran, B.: Nonlinear finite elements for continua & structures, (2000) · Zbl 0959.74001
[6] Givoli, D.; Neta, B.: High-order non-reflecting boundary condition for dispersive waves, Wave motion 37, 257-271 (2003) · Zbl 1163.74357 · doi:10.1016/S0165-2125(02)00074-4
[7] Sarma, G. S.; Mallick, K.; Gadhinglajkar, V. R.: Nonreflecting boundary condition in finite-element formulation for an elastic wave equation, Geophysics 63, 1006-1016 (1998)
[8] Dominguez, J.: Boundary elements in dynamics, (1993) · Zbl 0790.73003
[9] Becker, A. A.: The boundary element method in engineering, (1992)
[10] W.J. Mansur, A time-stepping technique to solve wave propagation problems using the boundary element method, Ph.D. Thesis, University of Southampton, England, 1983.
[11] Von Estorff, O.; Antes, H.: On FEM -- BEM coupling for fluid -- structure interaction analysis in the time domain, Int. J. Numer. methods engrg. 31, 1151-1168 (1991) · Zbl 0825.73813 · doi:10.1002/nme.1620310609
[12] Belytschko, T.; Lu, Y. Y.: A variationally coupled FE -- BE method for transient problems, Int. J. Numer. methods engrg. 37, 91-105 (1994) · Zbl 0796.73056 · doi:10.1002/nme.1620370107
[13] Yu, G.; Mansur, W. J.; Carrer, J. A. M.; Lie, S. T.: A more stable scheme for BEM/FEM coupling applied to two-dimensional elastodynamics, Comput. struct. 79, 811-823 (2001)
[14] Jr., D. Soares; Von Estorff, O.; Mansur, W. J.: Iterative coupling of BEM and FEM for nonlinear dynamic analyses, Comput. mech. 34, 67-73 (2004) · Zbl 1141.74372 · doi:10.1007/s00466-004-0554-4
[15] Von Estorff, O.; Hagen, C.: Iterative coupling of FEM and BEM in 3D transient elastodynamics, Engrg. anal. Bound. elem. 29, 775-787 (2005) · Zbl 1182.74209 · doi:10.1016/j.enganabound.2005.04.004
[16] Jr., D. Soares; Von Estorff, O.; Mansur, W. J.: Efficient nonlinear solid -- fluid interaction analysis by an iterative BEM/FEM coupling, Int. J. Numer. methods engrg. 64, 1416-1431 (2005) · Zbl 1122.74382 · doi:10.1002/nme.1408
[17] A. Warszawski, BEM -- FEM coupling for axisymmetric acoustic -- elastodynamic problems in time domain, M.Sc. Dissertation, COPPE/UFRJ, Brazil, 2005 (in Portuguese).
[18] A. Warszawski, D. Soares Jr., W.J. Mansur, Axisymmetric acoustic modeling by the BEM: analytical time integration, BETEQ 2007, Naples, Italy, 2007. · Zbl 1195.76298
[19] Warszawski, A.; Mansur, W. J.; Jr., D. Soares: Analytical time integration for BEM axisymmetric acoustic modeling, Int. J. Numer. methods engrg. 73, 1989-2010 (2008) · Zbl 1195.76298 · doi:10.1002/nme.2163
[20] Yu, G.; Mansur, W. J.; Carrer, J. A. M.; Gong, L.: A linear $\theta $ method applied to 2D time-domain BEM, Commun. numer. Methods engrg. 14, 1171-1179 (1998) · Zbl 0919.65064 · doi:10.1002/(SICI)1099-0887(199812)14:12<1171::AID-CNM217>3.0.CO;2-G
[21] Newmark, N. M.: A method of computation for structural dynamics, ASCE J. Engrg. mech. Div. 85, 67-94 (1959)
[22] Cohen, G.; Joly, P.: Fourth order schemes for the heterogeneous acoustic equation, Comput. methods appl. Mech. engrg. 80, 397-407 (1990) · Zbl 0733.76053 · doi:10.1016/0045-7825(90)90044-M
[23] Jr., D. Soares; Mansur, W. J.; Lima, D. L.: An explicit multi-level time-step algorithm to model the propagation of interacting acoustic -- elastic waves using finite element/finite difference coupled procedures, Comput. model. Engrg. sci. 17, 19-34 (2007) · Zbl 1184.65091 · http://techscience.com/cmes/2007/v17n1_index.html