zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The real and complex Lorenz equations in rotating fluids and lasers. (English) Zbl 1194.76280
Summary: The Lorenz equations are derived systematically from amplitude equations of weakly nonlinear dispersively unstable physical systems near criticality when weak dissipation is added. This derivation is only valid if the undamped neutral curve is not destabilised by the addition of weak dissipation. The addition of extra weak dispersive effects make some of the coefficients complex and yields a complex set of Lorenz equations. Both sets of equations are derived in examples in laser optics and baroclinic instability.

76U05Rotating fluids
78A60Lasers, masers, optical bistability, nonlinear optics
Full Text: DOI
[1] Lorenz, E. N.: J. atmos. Sci.. 20, 130 (1963)
[2] Saltzmann, B.: J. atmos. Sci.. 19, 329 (1962)
[3] Gibbon, J. D.; Mcguinness, M. J.: Proc. royal soc. A. 377, 185 (1981)
[4] Newell, A. C.: A.c.newell nonlinear wave motion. Nonlinear wave motion (1974)
[5] Stuart, J. T.: J. fluid mech.. 9, 353 (1960)
[6] Gibbon, J. D.; James, I. N.; Moroz, I. M.: Proc. royal soc. Lond.. 367, 219 (1978)
[7] Pedlosky, J.: J. atmos. Sci.. 29, 680 (1972)
[8] Moroz, I. M.; Brindley, J.: Proc. royal soc. Lond. A. 377, 379 (1981)
[9] Weissman, M. A.: Phil. trans. Royal soc. Lond.. 290, 639 (1979)
[10] Lange, C.; Newell, A. C.: SIAM J. Appl. math. 21, 605 (1971)
[11] Gibbon, J. D.; Mcguinness, M. J.: Phys. lett.. 77A, 295 (1980)
[12] Brindley, J.; Moroz, I. M.: Phys. lett.. 77A, 441 (1980)
[13] J. Brindley and I.M. Moroz, preprint (1981).
[14] Fowler, A. C.; Gibbon, J. D.; Mcguinness, M. J.: Physica. 4D, 139 (1982)
[15] Philips, N. A.: Tellus. 6, 273 (1954)
[16] Pedlosky, J.: J. atmos. Sci.. 27, 15 (1970)
[17] Pedlosky, J.: J. atmos. Sci.. 28, 587 (1971)
[18] Romea, R.: J. atmos. Sci.. 34, 1689 (1977)
[19] Pedlosky, J.; Frenzen, C.: J. atmos. Sci.. 37, 1177 (1980)
[20] Haken, H.: Encyclopedia of physics: light and matter. 25/2c (1970)
[21] Haken, H.: Phys. lett.. 53A, 77 (1975)
[22] Haken, H.: Z. physik B. 29, 61 (1978)
[23] Haken, H.; Ohno, H.: Optics communication. 16, 205 (1976)
[24] Haken, H.; Ohno, H.: Physics letts.. 59A, 261 (1976)
[25] Haken, H.; Ohno, H.: Optics comm.. 26, 117 (1978)
[26] P.J. Holmes, preprint (1980).
[27] Holmes, P. J.; Marsden, J. E.: Proc. int. Conf. nonlinear dynamics: annals NY acad. Sci.. (1980)
[28] Howard, L. N.; Krishnamurti, R.: Bull. of American phys. Soc.. 25, 1080 (1980)