Level set reconstruction of conductivity and permittivity from boundary electrical measurements using experimental data. (English) Zbl 1194.78011

Summary: A shape reconstruction method for electrical resistance and capacitance tomography is presented using a level set formulation. In this shape reconstruction approach, the conductivity (or permittivity) values of the inhomogeneous background and the obstacles are assumed to be (approximately) known, but the number, sizes, shapes, and locations of these obstacles have to be recovered from the data. A key point in this shape identification technique is to represent geometrical boundaries of the obstacles by using a level set function. This representation of the shapes has the advantage that the level set function automatically handles the splitting or merging of the objects during the reconstruction. Another key point of the algorithm is to solve the inverse problem of finding the interfaces between two materials using a narrow-band method, which not only decreases the number of unknowns and therefore the computational cost of the inversion, but also tends to improve the condition number of the discrete inverse problem compared to pixel (voxel)-based image reconstruction. Level set shape reconstruction results shown in this article are some of the first ones using experimental electrical tomography data. The experimental results also show some improvements in image quality compared with the pixel-based image reconstruction. The proposed technique is applied to 2D resistance and capacitance tomography for both simulated and experimental data. In addition, a full 3D inversion is performed on simulated 3D resistance tomography data.


78A25 Electromagnetic theory (general)
Full Text: DOI


[1] DOI: 10.1088/0967-3334/22/1/314 · doi:10.1088/0967-3334/22/1/314
[2] DOI: 10.1088/0957-0233/10/11/315 · doi:10.1088/0957-0233/10/11/315
[3] Lionheart, WRB. 2001. Reconstruction algorithms for permittivity and conductivity imaging. Proc. 2nd World Congress on Industrial Process Tomography. 2001, Hannover, Germany. pp.1–4.
[4] Tamburrino, A, Rubinacci, G, Soleimani, M and Lionheart, WRB. 2003. A noniterative inversion method for electrical resistance, capacitance and inductance tomography for two phase materials. Proc. 3rd World Congress on Industrial Process Tomography. 2003, Banff, Canada. pp.233–238.
[5] DOI: 10.1088/0266-5611/15/5/318 · Zbl 0936.35195 · doi:10.1088/0266-5611/15/5/318
[6] DOI: 10.1088/0266-5611/16/4/310 · Zbl 0955.35076 · doi:10.1088/0266-5611/16/4/310
[7] DOI: 10.1137/S003614100036656X · Zbl 0980.35170 · doi:10.1137/S003614100036656X
[8] DOI: 10.1088/0266-5611/20/4/019 · Zbl 1074.35087 · doi:10.1088/0266-5611/20/4/019
[9] DOI: 10.1051/cocv:2001121 · Zbl 0989.35136 · doi:10.1051/cocv:2001121
[10] DOI: 10.1016/j.jcp.2003.08.003 · Zbl 1036.65086 · doi:10.1016/j.jcp.2003.08.003
[11] DOI: 10.1088/0266-5611/19/6/055 · Zbl 1048.92022 · doi:10.1088/0266-5611/19/6/055
[12] DOI: 10.1016/0021-9991(88)90002-2 · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[13] Osher S, Level Set Methods and Dynamic Implicit Surfaces (2003)
[14] Sethian J, Level Set Methods and Fast Marching Methods,, 2. ed. (1999) · Zbl 0926.65106
[15] DOI: 10.1088/0266-5611/16/5/303 · Zbl 0983.35150 · doi:10.1088/0266-5611/16/5/303
[16] DOI: 10.1088/0266-5611/14/3/018 · Zbl 0912.35158 · doi:10.1088/0266-5611/14/3/018
[17] DOI: 10.1051/cocv:1996101 · Zbl 0870.49016 · doi:10.1051/cocv:1996101
[18] DOI: 10.1063/1.1517183 · doi:10.1063/1.1517183
[19] DOI: 10.1088/0957-0233/13/12/310 · doi:10.1088/0957-0233/13/12/310
[20] DOI: 10.1109/TMI.2005.843741 · doi:10.1109/TMI.2005.843741
[21] DOI: 10.1016/S0894-1777(02)00186-3 · doi:10.1016/S0894-1777(02)00186-3
[22] Soleimani M, Measurement Science and Technology (2005)
[23] DOI: 10.1016/0377-0427(92)90167-V · Zbl 0757.65128 · doi:10.1016/0377-0427(92)90167-V
[24] DOI: 10.1088/0266-5611/17/5/307 · Zbl 0985.35106 · doi:10.1088/0266-5611/17/5/307
[25] DOI: 10.1088/0266-5611/17/5/301 · Zbl 0986.35130 · doi:10.1088/0266-5611/17/5/301
[26] DOI: 10.1088/0266-5611/19/1/101 · Zbl 1030.65062 · doi:10.1088/0266-5611/19/1/101
[27] DOI: 10.1006/jcph.1996.0167 · Zbl 0860.65050 · doi:10.1006/jcph.1996.0167
[28] Dorn O, The Canadian Applied Mathematics Quarterly 10 pp 239– (2002)
[29] Soleimani, M, Aykroyd, RG, Freear, S, Lionheart, WRB and Podd, F. 2005. Multi-modal data fusion for enhanced imaging applied to 3D ERT with Ultrasound time of flight data. Proceedings of 4th World Congress on Industrial Process Tomography. 2005, Aizo, Japan. (in press)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.