×

Computing electromagnetic eigenmodes with continuous Galerkin approximations. (English) Zbl 1194.78053

Summary: Costabel and Dauge proposed a variational setting to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, three computational strategies are then possible. The original method, which requires a parameterization of the variational formulation. The second method, which is based on an a posteriori filtering of the computed eigenmodes. And the third method, which uses a mixed variational setting so that all spurious modes are removed a priori. In this paper, we discuss the relative merits of the approaches, which are illustrated by a series of 3D numerical examples.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
78A25 Electromagnetic theory (general)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V., Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21, 823-864 (1998) · Zbl 0914.35094
[2] Assous, F.; Degond, P.; Heintzé, E.; Raviart, P.-A.; Segré, J., On a finite element method for solving the three-dimensional Maxwell equations, J. Comput. Phys., 109, 222-237 (1993) · Zbl 0795.65087
[3] Babuska, I.; Osborn, J. E., Eigenvalue problems, (Handbook of Numerical Analysis, vol. II (1991), North Holland), 641-787 · Zbl 0875.65087
[4] Boffi, D., Three-dimensional finite element methods for the Stokes problem, SIAM J. Numer. Anal., 34, 664-670 (1997) · Zbl 0874.76032
[5] Boffi, D., Compatible discretizations for eigenvalue problems, (Compatible Spatial Discretizations. Compatible Spatial Discretizations, IMA Volumes in Mathematics and its Applications, vol. 142 (2006), Springer), 121-142 · Zbl 1110.65104
[6] Boffi, D.; Brezzi, F.; Gastaldi, L., On the convergence of eigenvalues for mixed formulations, Ann. Sci. Norm. Sup. Pisa Cl. Sci., 25, 131-154 (1997) · Zbl 1003.65052
[7] Boffi, D.; Costabel, M.; Dauge, M.; Demkowicz, L., Discrete compactness for the hp version of rectangular edge finite elements, SIAM J. Numer. Anal., 44, 979-1004 (2006) · Zbl 1122.65110
[8] Bossavit, A.; Rapetti, F., Geometrical localisation of the degrees of freedom for Whitney elements of higher order, IET Sci. Meas. Technol., 1, 63-66 (2007)
[9] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods. Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15 (1991), Springer · Zbl 0788.73002
[11] Ciarlet, P., Augmented formulations for solving Maxwell equations, Comput. Methods Appl. Mech. Engrg., 194, 559-586 (2005) · Zbl 1063.78018
[12] Ciarlet, P.; Girault, V., Inf-sup condition for the 3D, \(P_2 - iso - P_1\) Taylor-Hood finite element; application to Maxwell equations, C.R. Acad. Sci. Paris, Ser. I., 335, 827-832 (2002) · Zbl 1021.78009
[15] Costabel, M., A coercive bilinear form for Maxwell’s equations, J. Math. Anal. Appl., 157, 527-541 (1991) · Zbl 0738.35095
[16] Costabel, M.; Dauge, M., Singularities of Maxwell’s equations on polyhedral domains, (Analysis, Numerics and Applications of Differential and Integral Equations. Analysis, Numerics and Applications of Differential and Integral Equations, Pitman Research Notes in Mathematics Series, vol. 379 (1998), Addison-Wesley), 69-76 · Zbl 0904.35089
[17] Costabel, M.; Dauge, M., Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math., 93, 239-277 (2002) · Zbl 1019.78009
[18] Costabel, M.; Dauge, M., Computation of resonance frequencies for Maxwell equations in non smooth domains, (Computational Methods for Wave Propagation in Direct Scattering. Computational Methods for Wave Propagation in Direct Scattering, Lecture Notes in Computer Science and Engineering, vol. 31 (2003), Springer) · Zbl 1116.78002
[21] Kikuchi, F., Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism, Comput. Methods Appl. Mech. Engrg., 64, 509-521 (1987) · Zbl 0644.65087
[22] Monk, P.; Demkowicz, L., Discrete compactness and the approximation of Maxwell’s equations in \(R^3\), Math. Comput., 70, 507-523 (2001) · Zbl 1035.65131
[23] Nédélec, J.-C., Mixed finite elements in \(R^3\), Numer. Math., 35, 315-341 (1980) · Zbl 0419.65069
[24] Stenberg, R., Analysis of mixed finite element methods for the Stokes problem: a unified approach, Math. Comput., 42, 9-23 (1984) · Zbl 0535.76037
[25] Weber, C., A local compactness theorem for Maxwell’s equations, Math. Methods Appl. Sci., 2, 12-25 (1980) · Zbl 0432.35032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.