zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Computing electromagnetic eigenmodes with continuous Galerkin approximations. (English) Zbl 1194.78053
Summary: Costabel and Dauge proposed a variational setting to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, three computational strategies are then possible. The original method, which requires a parameterization of the variational formulation. The second method, which is based on an a posteriori filtering of the computed eigenmodes. And the third method, which uses a mixed variational setting so that all spurious modes are removed a priori. In this paper, we discuss the relative merits of the approaches, which are illustrated by a series of 3D numerical examples.

78M10Finite element methods (optics)
78A25General electromagnetic theory
Full Text: DOI
[1] Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V.: Vector potentials in three-dimensional non-smooth domains, Math. methods appl. Sci. 21, 823-864 (1998) · Zbl 0914.35094 · doi:10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
[2] Assous, F.; Degond, P.; Heintzé, E.; Raviart, P. -A.; Segré, J.: On a finite element method for solving the three-dimensional Maxwell equations, J. comput. Phys. 109, 222-237 (1993) · Zbl 0795.65087 · doi:10.1006/jcph.1993.1214
[3] Babuska, I.; Osborn, J. E.: Eigenvalue problems, Handbook of numerical analysis, 641-787 (1991) · Zbl 0875.65087
[4] Boffi, D.: Three-dimensional finite element methods for the Stokes problem, SIAM J. Numer. anal. 34, 664-670 (1997) · Zbl 0874.76032 · doi:10.1137/S0036142994270193
[5] Boffi, D.: Compatible discretizations for eigenvalue problems, IMA volumes in mathematics and its applications 142, 121-142 (2006) · Zbl 1110.65104
[6] Boffi, D.; Brezzi, F.; Gastaldi, L.: On the convergence of eigenvalues for mixed formulations, Ann. sci. Norm. sup. Pisa cl. Sci. 25, 131-154 (1997) · Zbl 1003.65052 · numdam:ASNSP_1997_4_25_1-2_131_0
[7] Boffi, D.; Costabel, M.; Dauge, M.; Demkowicz, L.: Discrete compactness for the hp version of rectangular edge finite elements, SIAM J. Numer. anal. 44, 979-1004 (2006) · Zbl 1122.65110 · doi:10.1137/04061550X
[8] Bossavit, A.; Rapetti, F.: Geometrical localisation of the degrees of freedom for Whitney elements of higher order, IET sci. Meas. technol. 1, 63-66 (2007)
[9] Brezzi, F.; Fortin, M.: Mixed and hybrid finite element methods, Springer series in computational mathematics 15 (1991) · Zbl 0788.73002
[10] A. Buffa, P. Ciarlet Jr., E. Jamelot, Solving electromagnetic eigenvalue problems in polyhedral domains. Numer. Math., submitted for publication. · Zbl 1180.78048
[11] Jr., P. Ciarlet: Augmented formulations for solving Maxwell equations, Comput. methods appl. Mech. engrg. 194, 559-586 (2005) · Zbl 1063.78018 · doi:10.1016/j.cma.2004.05.021
[12] Jr., P. Ciarlet; Girault, V.: Inf -- sup condition for the 3D, P2-iso-P1 Taylor -- Hood finite element; application to Maxwell equations, CR acad. Sci. Paris, ser. I. 335, 827-832 (2002) · Zbl 1021.78009 · doi:10.1016/S1631-073X(02)02564-5
[13] P. Ciarlet Jr., G. Hechme, Mixed, augmented variational formulations for Maxwell’s equations: numerical analysis via the macroelement technique. Numer. Math., submitted for publication.
[14] P. Ciarlet Jr., F. Lefèvre, S. Lohrengel, S. Nicaise, Weighted regularization for composite materials in electromagnetism. Math. Mod. Numer. Anal., submitted for publication. · Zbl 1192.78039
[15] Costabel, M.: A coercive bilinear form for Maxwell’s equations, J. math. Anal. appl. 157, 527-541 (1991) · Zbl 0738.35095 · doi:10.1016/0022-247X(91)90104-8
[16] Costabel, M.; Dauge, M.: Singularities of Maxwell’s equations on polyhedral domains, Pitman research notes in mathematics series 379, 69-76 (1998) · Zbl 0904.35089
[17] Costabel, M.; Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains, Numer. math. 93, 239-277 (2002) · Zbl 1019.78009 · doi:10.1007/s002110100388
[18] Costabel, M.; Dauge, M.: Computation of resonance frequencies for Maxwell equations in non smooth domains, Lecture notes in computer science and engineering 31 (2003) · Zbl 1116.78002
[19] M. Dauge, Benchmark computations for Maxwell equations for the approximation of highly singular solutions (2004). See Monique Dauge’s personal web page at the location. &lt;http://perso.univ-rennes1.fr/monique.dauge/core/index.html&gt;.
[20] E. Heintzé, Solution to the 3D instationary Maxwell equations with conforming finite elements (in French). PhD Thesis, Université Paris VI, France, 1992.
[21] Kikuchi, F.: Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism, Comput. methods appl. Mech. engrg. 64, 509-521 (1987) · Zbl 0644.65087 · doi:10.1016/0045-7825(87)90053-3
[22] Monk, P.; Demkowicz, L.: Discrete compactness and the approximation of Maxwell’s equations in R3, Math. comput. 70, 507-523 (2001) · Zbl 1035.65131 · doi:10.1090/S0025-5718-00-01229-1
[23] Nédélec, J. -C.: Mixed finite elements in R3, Numer. math. 35, 315-341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[24] Stenberg, R.: Analysis of mixed finite element methods for the Stokes problem: a unified approach, Math. comput. 42, 9-23 (1984) · Zbl 0535.76037 · doi:10.2307/2007557
[25] Weber, C.: A local compactness theorem for Maxwell’s equations, Math. methods appl. Sci. 2, 12-25 (1980) · Zbl 0432.35032 · doi:10.1002/mma.1670020103