zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The asymptotic iteration method for the eigenenergies of the anharmonic oscillator potential $V(x)=Ax^{2\alpha} +Bx^2$. (English) Zbl 1194.81060
Summary: The asymptotic iteration method is used to calculate the eigenenergies for the anharmonic oscillator potentials $V(x)=Ax^{2\alpha} +Bx^{2} (A>0, B<0)$, with $(\alpha =2)$ for quartic, and $(\alpha =3)$ for sextic anharmonic oscillators. An adjustable parameter $\beta $ is introduced in the method to improve its rate of convergence. Comparing the present results with the numerical values calculated by earlier workers, it is found that, asymptotically this method gives exact results over the full range of parameter values, $A$ and $B$.

81Q05Closed and approximate solutions to quantum-mechanical equations
Full Text: DOI
[1] Maknikowski, P.; Radosz, A.: Phys. lett. A. 292, 300 (2002)
[2] Zhou, B.; Liang, J. -Q.; Pud, F. -C.: Phys. lett. A. 281, 105 (2001)
[3] Paspalakis, E.: Phys. lett. A. 261, 247 (1999)
[4] Chen, J.; Kwek, L. C.; Oh, C. H.: Phys. rev. A. 67, 012101 (2003)
[5] Auberson, G.; Peyranere, M. C.: Phys. rev. A. 65, 032120 (2002)
[6] Biswas, S. N.; Datta, K.; Saxena, R. P.; Srivastava, P. K.; Varma, V. S.: J. math. Phys.. 14, 1190 (1973)
[7] Tater, M.: J. phys. A. 20, 2483 (1987)
[8] Keung, W.; Kovacs, E.; Sukhatme, U. P.: Phys. rev. Lett.. 60, 41 (1998)
[9] De Souza Dutra, A.; De Castro, A. S.: Phys. rev. A. 51, 3480 (1995)
[10] De Castro, A. S.; De Souza Dutra, A.: Phys. lett. A. 269, 281 (2000) · Zbl 1115.65344
[11] Quigg, C.; Rosner, J. L.: Phys. rep.. 56, 167 (1979)
[12] Bender, C. M.; Wu, T. T.: Phys. rev. D. 7, 1620 (1973)
[13] Loeffel, J. J.; Martin, A.; Simon, B.; Wightman, A. S.: Phys. lett. B. 30, 656 (1969)
[14] Simon, B.: Bull. amer. Math. soc.. 24, 303 (1991)
[15] Ciftci, H.; Hall, R. L.; Saad, N.: J. phys. A. 36, 11807 (2003)
[16] Barakat, T.; Abodayeh, K.; Mukheimer, A.: J. phys. A. 38, 1299 (2005)
[17] Fernández, F. M.: J. phys. A. 37, 6173 (2004)