zbMATH — the first resource for mathematics

A model of the polling system for studying the broadband wireless networks. (English. Russian original) Zbl 1194.90023
Autom. Remote Control 67, No. 12, 1974-1985 (2006); translation from Avtom. Telemekh 2006, No. 12, 123-135 (2006).
Summary: A study of the model of a cyclic (polling) system adequately describing the broadband wireless WiFi and WiMax centralized-control networks was presented. The server was assumed to have full information about the current system state. The queues are serviced by the exhaustive threshold discipline, that is, a queue is serviced if its length exceeds the given threshold. If the lengths of all queues are insufficient to start servicing, then the server stops polling the queue until any of them accumulates the required number of customers. Relying on the stationary probability distribution of the polling system states, the main performance characteristics such as the mean queue length, failure probability, and mean waiting time were established.

90B18 Communication networks in operations research
60K30 Applications of queueing theory (congestion, allocation, storage, traffic, etc.)
60K25 Queueing theory (aspects of probability theory)
Full Text: DOI
[1] Vishnevskii, V.M., Wireless Networks of Broadband Access to the Internet Resources, Elektrosvyaz’, 2000, no. 10, pp. 9–13.
[2] Vishnevskii, V.M., Lyakhov, A.I., Portnoi, S.L., and Shakhnovich, I.V., Shirokopolosnye besprovodnye seti peredachi informatsii (Broadband Wireless Information Transmission Networks), Moscow: Tekhnosfera, 2005.
[3] Ziouva, E. and Antonakopoulos, T., Improved IEEE 802.11 PCF Performance Using Silence Detection and Cyclic Shift on Stations Polling, IEE Proc. Commun., 2003, vol. 150, no. 1, pp. 45–51. · doi:10.1049/ip-com:20030139
[4] Ziouva, E. and Antonakopoulos, T., Efficient Voice Communications over IEEE802.11 WLANs Using Improved PCF Procedures, Proc. Third Int. Work Conf.–INC 2002/07.
[5] Grillo, D., Polling Mechanism Models in Communication Systems–Some Application Examples, in Stochastic Analysis of Computer and Communication Systems, Takagi, H., Ed., Amsterdam: North-Holland, 1990, pp. 659–698.
[6] Levy, H. and Sidi, M., Polling Systems: Applications, Modeling and Optimization, IEEE Trans. Commun., 1990, vol. 38, no. 10, pp. 1750–1760. · doi:10.1109/26.61446
[7] Takagi, H., Applications of Polling Models to Computer Networks, Comput. Networks ISDN Syst., 1991, vol. 22, no. 3, pp. 193–211. · doi:10.1016/0169-7552(91)90087-S
[8] Bruno, R., Conti, M., and Gregory, E., Bluetooth: Architecture, Protocols and Scheduling Algorithms, Cluster Comput., 2002, vol. 5, pp. 117–131. · doi:10.1023/A:1013989524865
[9] Miorandi, D., Zanella, A., and Pierobon, G., Performance Evaluation of Bluetooth Polling Schemes: An Analytical Approach, ACM Mobile Networks Appl., 2004, vol. 9, no. 2, pp. 63–72. · Zbl 02040452 · doi:10.1023/A:1027373823773
[10] Vishnevsky, V.M. and Lyakhov, A.I., Adaptive Features of IEEE 802.11 Protocol: Utilization, Tuning and Modifications, Proc. 8th HP-OVUA Conf., Berlin, 2001.
[11] Bakanov, A.S., Vishnevskii, V.M., and Lyakhov, A.I., A Method for Evaluating Performance of Wireless Communication Networks with Centralized Control, Avtom. Telemekh., 2000, no. 4, pp. 97–105.
[12] Vishnevskii, V.M., Lyakhov, A.I., and Guzakov, N.N., Estimation of the Maximum Performance of the Wireless Internet Access, Avtom. Telemekh., 2004, no. 9, pp. 52–70.
[13] Vishnevsky, V.M., Lyakhov, A.I., and Guzakov, N.N., An Adaptive Polling Strategy for IEEE 802.11 PCF, Proc. 7th Int. Symp. on Wireless Personal Multimedia Commun. (WPMC’04), Abano Terme, Italy, 2004, vol. 1, pp. 87–91.
[14] Borst, S.C., Polling Systems, Amsterdam: Stichting Mathematisch Centrum, 1996. · Zbl 0932.90007
[15] Takagi, H., Queuing Analysis of Polling Models: Progress in 1990–1994, in Frontiers in Queuing, Dshalalow, J.H., Ed., Boca Raton: CRC, 1997, pp. 119–146. · Zbl 0871.60077
[16] Vishnevskii, V.M. and Semenova, O.V., Mathematical Methods to Study the Polling Systems, Avtom. Telemekh., 2006, no. 2, pp. 3–56. · Zbl 1126.60321
[17] Altman, E., Blanc, H., Khamisy, A., and Yechiali, Y., Gated-type Polling Systems with Walking and Switch-in Times, Commun. Stat.: Stochastic Models, 1994, vol. 10, no. 4, pp. 741–763. · Zbl 0806.60093 · doi:10.1080/15326349408807320
[18] Singh, M.P. and Srinivasan, M.M., Exact Analysis of the State-dependent Polling Model, Queuing Syst., 2002, vol. 41, pp. 371–399. · Zbl 0993.90025 · doi:10.1023/A:1016287431905
[19] Eisenberg, M., The Polling System with a Stopping Server, Queueing Syst., 1994, vol. 18, pp. 387–431. · Zbl 0836.90076 · doi:10.1007/BF01158769
[20] Günalay, Y. and Gupta, D., Polling System with Patient Server and State-dependent Setup Times, IIE Trans., 1997, vol. 29, no. 6, pp. 469–480.
[21] Günalay, Y. and Gupta, D., Threshold Start-up Control Policy for Polling Systems, Queueing Syst., 1998, vol. 29, no. 2–4, pp. 399–421. · Zbl 0917.90130 · doi:10.1023/A:1019152601966
[22] Gupta, D. and Srinivasan, M.M., Polling Systems with State-dependent Setup Times, Queueing Syst., 1996, vol. 22, no. 3–4, pp. 403–423. · Zbl 0860.60081 · doi:10.1007/BF01149181
[23] Fricker, C. and Jaibi, M.R., Monotonicity and Stability of Periodic Polling Models, Queueing Syst. Theory Appl., 1994, vol. 15, no. 3, pp. 211–238. · Zbl 0789.60092 · doi:10.1007/BF01189238
[24] Fuhrmann, S.W. and Cooper, R.B., Stochastic Decompositions in the M/G/1 Queue with Generalized Vacations, Oper. Res., 1985, vol. 33, no. 5, pp. 1117–1129. · Zbl 0585.90033 · doi:10.1287/opre.33.5.1117
[25] Schriber, T.J., Simulation Using GPSS, New York: Wiley, 1974. · Zbl 0305.68006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.