×

zbMATH — the first resource for mathematics

Output regulation of nonlinear systems using conditional servocompensators. (English) Zbl 1194.93083
Summary: This paper studies the output regulation of nonlinear systems using conditional servocompensators. Previous work introduced the conditional servocompensator, which acts as a traditional servocompensator in the neighborhood of a zero-error manifold while acting as a stable system otherwise, leading to improvement in the transient response while achieving zero steady-state regulation error. The conditional servocompensator tool was introduced for sliding-mode feedback controllers. This paper extends the technique to more general feedback controllers by using Lyapunov redesign and saturated high-gain feedback.

MSC:
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atassi, A.N.; Khalil, H.K., A separation principle for the control of a class of nonlinear systems, IEEE transactions on automatic control, 46, 742-746, (2001) · Zbl 1055.93064
[2] Byrnes, C.I.; Isidori, A., Nonlinear internal models for output regulation, IEEE transactions on automatic control, 49, 12, 2244-2247, (2004) · Zbl 1365.93388
[3] Byrnes, C.I.; Priscoli, F.D.; Isidori, A., Output regulation of uncertain nonlinear systems, (1997), Birkhauser Boston · Zbl 0873.93043
[4] Chen, Z.; Huang, J., Global robust servomechanism problem of lower triangular system in the general case, Systems & control letters, 52, 209-220, (2004) · Zbl 1157.93464
[5] Chen, Z.; Huang, J., Robust output regulation with nonlinear exosystems, Automatica, 41, 1447-1454, (2005) · Zbl 1086.93013
[6] Huang, J., Nonlinear output regulation: theory and applications, (2004), SIAM Philadelphia · Zbl 1087.93003
[7] Huang, J.; Lin, C.F., On a robust nonlinear multivariable servomechanism problem, IEEE transactions on automatic control, 39, 1510-1513, (1994) · Zbl 0800.93290
[8] Isidori, A., Nonlinear systems, (1995), Springer New York · Zbl 0569.93034
[9] Isidori, A.; Marconi, L.; Serrani, A., Robust autonomous guidance: an internal model approach, (2003), Springer London · Zbl 0991.93535
[10] Khalil, H.K., Robust servomechanism output feedback controllers for feedback linearizable systems, Automatica, 30, 1587-1599, (1994) · Zbl 0816.93032
[11] Khalil, H.K., On the design of robust servomechanisms for minimum phase nonlinear systems, International journal of robust and nonlinear control, 10, 339-361, (2000) · Zbl 1071.93501
[12] Khalil, H.K., Nonlinear control systems, (2002), Prentice-Hall New Jersey
[13] Mahmoud, N.A.; Khalil, H.K., Robust control for a nonlinear servomechanism problem, International journal of control, 66, 6, 779-802, (1997) · Zbl 0873.93039
[14] Priscoli, F. D. (1993). Robust tracking for polynomial plants. In Proceedings of the European control conference (pp. 369-373).
[15] Priscoli, F.D.; Marconi, L.; Isidori, A., A new approach to adaptive nonlinear regulation, SIAM journal on control and optimization, 45, 3, 829-855, (2006) · Zbl 1115.93046
[16] Priscoli, F.D.; Marconi, L.; Isidori, A., Adaptive observers as nonlinear internal models, Systems & control letters, 55, 640-649, (2006) · Zbl 1100.93005
[17] Serrani, A.; Isidori, A.; Marconi, L., Semiglobal robust output regulation of minimum-phase nonlinear systems, International journal of robust and nonlinear control, 10, 379-396, (2000) · Zbl 0955.93016
[18] Serrani, A.; Isidori, A.; Marconi, L., Semiglobal nonlinear output regulation with adaptive internal model, IEEE transactions on automatic control, 46, 1178-1194, (2001) · Zbl 1057.93053
[19] Seshagiri, S.; Khalil, H.K., Robust output feedback regulation of minimum-phase nonlinear systems using conditional integrators, Automatica, 41, 1, 43-54, (2005) · Zbl 1066.93016
[20] Seshagiri, S.; Khalil, H.K., Robust output regulation of minimum phase nonlinear systems using conditional servocompensators, International journal of robust and nonlinear control, 15, 83-102, (2005) · Zbl 1056.93031
[21] Singh, A.; Khalil, H.K., Regulation of nonlinear systems using conditional integrators, International journal of robust and nonlinear control, 15, 339-362, (2005) · Zbl 1112.93030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.