×

Adaptive fault-tolerant control of non-linear systems: An improved CMAC-based fault learning approach. (English) Zbl 1194.93111

Summary: The conventional cerebellar model articulation controllers (CMAC) learning scheme equally distributes the correcting errors into all addressed hypercubes, regardless of the credibility of those hypercubes. This paper presents the adaptive fault-tolerant control scheme of non-linear systems using a fuzzy credit assignment CMAC neural network online fault learning approach. The credit assignment concept is introduced into fuzzy CMAC weight adjusting to use the learned times of addressed hypercubes as the credibility of CMAC. The correcting errors are proportional to the inversion of learned times of addressed hypercubes. With this fault learning model, the learning speed of fault can be improved. After the unknown fault is estimated, online, by using the fuzzy credit assignment CMAC, the effective control law reconfiguration strategy based on the sliding mode control technique is used to compensate for the effect of the fault. The proposed fault-tolerant controller adjusts its control signal by adding a corrective sliding mode control signal to confine the system performance within a boundary layer. The numerical simulations demonstrate the effectiveness of the proposed CMAC algorithm and fault-tolerant controller.

MSC:

93C40 Adaptive control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1115/1.3426922 · Zbl 0314.92007 · doi:10.1115/1.3426922
[2] DOI: 10.1115/1.3426923 · Zbl 0313.92006 · doi:10.1115/1.3426923
[3] Alwi H, Amer. Cont. Conf. pp 1– (2006)
[4] DOI: 10.1080/00207170500241817 · Zbl 1099.93039 · doi:10.1080/00207170500241817
[5] DOI: 10.1016/S0005-1098(02)00098-5 · Zbl 1011.93505 · doi:10.1016/S0005-1098(02)00098-5
[6] Chen J, Robust Model-based Fault Diagnosis for Dynamic Systems (1999) · Zbl 0920.93001
[7] DOI: 10.1109/9.989090 · Zbl 1364.93881 · doi:10.1109/9.989090
[8] DOI: 10.1016/S0005-1098(02)00018-3 · Zbl 1015.93030 · doi:10.1016/S0005-1098(02)00018-3
[9] DOI: 10.1016/S0378-4754(01)00330-5 · Zbl 1002.93513 · doi:10.1016/S0378-4754(01)00330-5
[10] Chi-Yuan, C and Youssef, HM. 1995. Neural network and fuzzy logic approach to aircraft reconfigurable control design. Proceedings of the American Control Conference. 1995, New York, USA. pp.3505–3509.
[11] DOI: 10.1109/TSMCB.2003.811768 · doi:10.1109/TSMCB.2003.811768
[12] DOI: 10.1109/87.918902 · doi:10.1109/87.918902
[13] DOI: 10.1016/j.conengprac.2005.05.002 · doi:10.1016/j.conengprac.2005.05.002
[14] DOI: 10.1016/S0005-1098(99)00177-6 · Zbl 0968.93502 · doi:10.1016/S0005-1098(99)00177-6
[15] DOI: 10.1016/0005-1098(90)90018-D · Zbl 0713.93052 · doi:10.1016/0005-1098(90)90018-D
[16] DOI: 10.2514/2.4077 · Zbl 0900.93271 · doi:10.2514/2.4077
[17] Gertler JJ, Fault Detection and Diagnosis in Engineering Systems (1998)
[18] Ho LW, PhD thesis (2000)
[19] Isermann R, Proceedings of IFAC Symposium on Fault Detection, Supervision, and Safety for Technical Processes pp 1– (2000)
[20] DOI: 10.1109/9.964696 · Zbl 1006.93068 · doi:10.1109/9.964696
[21] DOI: 10.1109/72.641451 · doi:10.1109/72.641451
[22] DOI: 10.1115/1.2801286 · Zbl 0935.93021 · doi:10.1115/1.2801286
[23] DOI: 10.1016/0005-1098(94)90154-6 · Zbl 0800.93709 · doi:10.1016/0005-1098(94)90154-6
[24] Noura H, IEEE Inter. Conf. Sys., Man, and Cybernetics 24 pp 453– (1994) · doi:10.1109/ICSMC.1994.399881
[25] Patton, RJ. 1997. Fault-tolerant control: The 1997 situation (survey). Proceedings of IFAC Symposium on Fault Detection, Supervision, and Safety for Technical Processes. 1997, Hull, England. pp.1029–1052.
[26] Polycarpou, M, Xiaodong, Z, Xu, R, Yanli, Y and Chiman, K. 2004. A neural network based approach to adaptive fault tolerant flight control. Proceedings of the 2004 IEEE International Symposium on Intelligent Control. 2004, New York, USA. Vol. 38, pp.61–66.
[27] DOI: 10.1109/9.920792 · Zbl 1006.93074 · doi:10.1109/9.920792
[28] DOI: 10.1109/TSMCB.2003.810447 · doi:10.1109/TSMCB.2003.810447
[29] Tianhao, T and Gang, Y. 2005. A fault-tolerant control method based on adaptive FNN for ship control system. Inter. Conf. Cont. Automat. 2005, New York, USA. pp.26–29.
[30] DOI: 10.1109/72.105424 · doi:10.1109/72.105424
[31] DOI: 10.1016/j.automatica.2003.10.025 · Zbl 1060.93026 · doi:10.1016/j.automatica.2003.10.025
[32] DOI: 10.1023/B:JOTA.0000006691.37149.0b · Zbl 1046.93004 · doi:10.1023/B:JOTA.0000006691.37149.0b
[33] DOI: 10.1016/j.engappai.2004.10.003 · doi:10.1016/j.engappai.2004.10.003
[34] DOI: 10.1016/0165-0114(95)00314-2 · doi:10.1016/0165-0114(95)00314-2
[35] DOI: 10.1109/TAC.2004.832201 · Zbl 1365.93250 · doi:10.1109/TAC.2004.832201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.