[1] |
Ben Gaid, M. -M., & Çela, A. (2006). Trading quantization precision for sampling rates in networked systems with limited communication. In Proc. 45th IEEE conf. on decision and control, San Diego, USA (pp. 1135-1140). |

[2] |
Ben Gaid, M. -M., & Çela, A. (2009). Trading quantization precision for sampling rates in systems with limited communication in the uplink channel. Technical report TR-1- 06/2009. Available online on http://hal.inria.fr/inria-00405670/. Embedded Systems Department, ESIEE Paris, University of Paris East. |

[3] |
Ben Gaid, M. -M.; Çela, A.; Hamam, Y.: Optimal integrated control and scheduling of networked control systems with communication constraints: application to a car suspension system, IEEE transactions on control systems technology 14, No. 4, 776-787 (2006) |

[4] |
Blanchini, F.: Set invariance in control, Automatica 35, No. 11, 1747-1767 (1999) · Zbl 0935.93005
· doi:10.1016/S0005-1098(99)00113-2 |

[5] |
Brockett, R. W. (1995). Stabilization of motor networks. In Proc. 34th IEEE conf. on decision and control, New Orleans, USA (pp. 1484-1488). |

[6] |
Delchamps, D. F.: Stabilizing a linear system with quantized state feedback, IEEE transactions on automatic control 35, No. 8, 916-924 (1990) · Zbl 0719.93067
· doi:10.1109/9.58500 |

[7] |
Elia, N.; Mitter, S. K.: Stabilization of linear systems with limited information, IEEE transactions on automatic control 46, No. 9, 1384-1400 (2001) · Zbl 1059.93521
· doi:10.1109/9.948466
· http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=948466 |

[8] |
Fagnani, F.; Zampieri, S.: Quantized stabilization of linear systems: complexity versus performance, IEEE transactions on automatic control 49, No. 9, 1534-1548 (2004) |

[9] |
Georgiev, D.; Tilbury, D.: Packet-based control: the H2-optimal solution, Automatica 42, No. 1, 137-144 (2006) · Zbl 1136.93336
· doi:10.1016/j.automatica.2005.08.011 |

[10] |
Goodwin, G. C.; Haimovich, H.; Quevedo, D. E.; Welsh, J. S.: A moving horizon approach to networked control systems design, IEEE transactions on automatic control 49, No. 9, 1562-1572 (2004) |

[11] |
Gupta, V., Dana, A. F., Murray, R. M., & Hassibi, B. (2006). On the effect of quantization on performance. In Proc. 2006 American control conference, Minneapolis, MN, USA (pp. 1364-1369). |

[12] |
Heemels, M., Nesic, D., Teel, A. R., & Van De Wouw, N. (2009). Networked and quantized control systems with communication delays. In Proc. 48th IEEE conf. on Decision and Control, Shanghai, China. |

[13] |
Hespanha, J. P.; Naghshtabrizi, P.; Yonggang, X.: A survey of recent results in networked control systems, Proceedings of the IEEE 95, No. 1 (2007) |

[14] |
Kolmanovsky, I.; Gilbert, E. G.: Theory and computation of disturbance invariant sets for discrete-time linear systems, Mathematical problems in engineering 4, No. 4, 317-367 (1998) · Zbl 0923.93005
· doi:10.1155/S1024123X98000866 |

[15] |
Lemmon, M. D., & Ling, Q. (2004). Control system performance under dynamic quantization : the scalar case. In Proc. 43rd IEEE conf. on decision and control, Paradise Island, Bahamas (pp. 1884-1888). |

[16] |
Rakovic, S. V.; Kerrigan, E. C.; Kouramas, K. I.; Mayne, D. Q.: Invariant approximations of the minimal robust positively invariant set, IEEE transactions on automatic control 50, No. 3, 406-410 (2005) |

[17] |
Verriest, E., & Egerstedt, M. (2003). Control with delayed and limited information: a first look. In Proc. 42nd IEEE conf. on decision and control, Hawaii, USA(pp. 1231-1236). |