×

Averages of certain multiplicative functions over smooth integers. (Moyennes de certaines fonctions multiplicatives sur les entiers friables.) (French) Zbl 1195.11132

Summary: An integer \(n\) is called smooth (without large prime factors, French: friable) when its prime number factorization consists exclusively of (relatively) small factors. Let \(P(n)\) be the largest prime factor occurring in this factorization, and let \(S(x,y)\) denote the set \(\{n\leq x, P(n)\leq y\}\). This work investigates the asymptotic behaviour of the summatory function \[ \Psi_f(x, y):=\sum_{n\in S(x,y)}f(n) \] when \(f\) is a multiplicative arithmetic function satisfying some simple and general conditions concerning its mean behaviour on primes and on powers of primes. One such condition is \(|\sum_{p\leq z}f(p)\log p-\kappa z|\leq Cz/R(z)\) \((z>1)\), where \(C\) is a constant and \(\kappa>0\); requirements on \(R\) are technical conditions too long to state here, but satisfied by any “reasonable” positive increasing function. By setting \(R(z)=(\log z)^\delta\) in the very general Theorem 2.1, the authors obtain a more general as well as more precise estimate on \(\Psi_f(x, y)\) (Corollary 2.2) than that recently obtained by J. M. Song [Acta Arith. 102, No. 2, 105–129 (2002; Zbl 0988.11041)]. Their next result (Corollary 2.3) offers a general estimate in the case where \(f(p)\) is on average very close to a constant, and contains without loss of precision estimates of the literature for particular functions f, such as the so-called Piltz functions \(\tau_k\), or the function \(\mu^2\) where \(\mu\) is the Möbius function. Then, as a further application of their first result, they establish an Erdős-Wintner theorem on smooth integers (Theorem 2.4). They finally mention an application to the case where \(f(n)\) is the characteristic function of the integers that can be represented as a sum of two squares of integers (Theorem 2.5); their estimate is uniformly valid for \(x\geq 3\), \(\exp((\log x)^{2/5+\varepsilon})\leq y\leq x\).
The paper begins with an historical introduction, and is followed by an extensive bibliography on the subject.
For Parts II–IV see (with G. Hanrot, Proc. Lond. Math. Soc. (3) 96, No. 1, 107–135 (2008; Zbl 1195.11129); Compos. Math. 144, No. 2, 339–376 (2008; Zbl 1168.11043), and CRM Proc. Lect. Notes 46, 129–141 (2008; Zbl 1182.11042).

MSC:

11N37 Asymptotic results on arithmetic functions
11N25 Distribution of integers with specified multiplicative constraints
Full Text: DOI

References:

[1] Trans. Amer. Math. Soc. 272 pp 87– (1982)
[2] Acta Arith. 49 pp 81– (1987)
[3] Balog A., Proc. Amer. Math. Soc. 115 pp 33– (1992)
[4] R. de la Breteche et G. Tenenbaum, Sur les lois locales de la repartition du k-ieme diviseur d’un entier, Proc. London Math. Soc. (3) 84 (2002), 289-323. · Zbl 1015.11047
[5] N., Nederl. Akad. Wetensch. Proc. (A) 54 (1951) pp 50– (1966)
[6] N., Nederl. Akad. Wetensch. Proc. (A) 67 pp 339– (1966)
[7] Nauk 71 pp 13– (1979)
[8] Nauk 74 pp 99– (1979)
[9] J.M. De Koninck and D. Hensley, Sums taken over n e x with prime factors ey of zW n, and their derivatives with respect to z, J. Indian Math. Soc. (N.S.) 42 (1978), 353-365. · Zbl 0473.10028
[10] Ark. Math. Astr. Fys. 22 pp 1– (1930)
[11] A. S. Fainleib, Tauberian theorems and mean values of multiplicative functions (en russe, resume en anglais), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 91 (1979), 145-157.
[12] W. J. Feller, An introduction to probability theory and its applications, vol. 2, John Wiley, 1971. · Zbl 0219.60003
[13] E. Fouvry et G. Tenenbaum, Entiers sans grand facteur premier en progressions arithmetiques, Proc. London Math. Soc. (3) 63 (1991), 449-494. · Zbl 0745.11042
[14] E. Fouvry et G. Tenenbaum, Repartition statistique des entiers sans grand facteur premier dans progressions arithmetiques, Proc. London Math. Soc. (3) 72 (1996), 481-514. · Zbl 0858.11049
[15] Granville A., Acta Arith. 170 pp 255– (1993)
[16] Granville A., Philos. Trans. Roy. Soc. London 345 pp 349– (1993)
[17] Halberstam H., Acta Arith. 18 pp 243– (1971)
[18] D. Hensley, The distribution of W n among numbers with no large prime factors, in: Analytic Number Theory and Diophantine Problems, A. Adolphson and al., eds., Proc. of a Conf. at Oklahoma State University 1984, Birkh user.Progr. Math.70 (1987), 247-281.
[19] Mathematika 31 pp 258– (1984)
[20] J. Number Th. 22 pp 289– (1986)
[21] J. Number Th. 25 pp 81– (1987)
[22] Hildebrand A., Trans. Amer. Math. Soc. 296 pp 265– (1986)
[23] Hildebrand A., J. Analyse 61 pp 145– (1993)
[24] Hildebrand A., J. Th. Nombres Bordeaux 5 pp 265– (1993)
[25] Hinz J. G., Acta Arith. 38 pp 209– (1980)
[26] A. Ivic and G. Tenenbaum, Local densities over integers free of large prime factors, Quart. J. Math. Oxford (2) 37 (1986), 401-417. · Zbl 0604.10024
[27] E. Landau, U ber dieBedeutung einiger neuen Grenzwerts tze der Herren Hardy und Axer, Prace matematyczno-fizycne (Warszawa) 21 (1910), 97-177.
[28] Levin B. V., Dolk. Akad. Nauk. SSSR 3 pp 3– (1966)
[29] Levin B. V., Russ. Math. Surv. 22 pp 119– (1967)
[30] Levin B. V., Dolk. Akad. Nauk. Tadzh. SSSR 29 pp 383– (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.