×

zbMATH — the first resource for mathematics

Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue. (English) Zbl 1195.20041
Summary: This article surveys many standard results about the braid group, with emphasis on simplifying the usual algebraic proofs.
We use van der Waerden’s trick to illuminate the Artin-Magnus proof of the classic presentation of the braid group considered as the algebraic mapping-class group of a disc with punctures.
We give a simple, new proof of the \(\sigma_1\)-trichotomy for the braid group, and, hence, recover the Dehornoy right-ordering of the braid group.
We give three proofs of the Birman-Hilden theorem concerning the fidelity of braid-group actions on free products of finite cyclic groups, and discuss the consequences derived by Perron-Vannier and the connections with Artin groups and the Wada representations.
The first, very direct, proof, is due to Crisp-Paris and uses the \(\sigma_1\)-trichotomy and the Larue-Shpilrain technique. The second proof arises by studying ends of free groups, and gives interesting extra information. The third proof arises from Larue’s study of polygonal curves in discs with punctures, and gives extremely detailed information.

MSC:
20F36 Braid groups; Artin groups
20E36 Automorphisms of infinite groups
20F05 Generators, relations, and presentations of groups
20E05 Free nonabelian groups
20F60 Ordered groups (group-theoretic aspects)
57M07 Topological methods in group theory
PDF BibTeX XML Cite
Full Text: DOI arXiv Link
References:
[1] A’Campo N., Math. Ann. 213 pp 1– (1975) · Zbl 0316.14011
[2] DOI: 10.1007/BF02950718 · JFM 51.0450.01
[3] DOI: 10.2307/1969218 · Zbl 0030.17703
[4] DOI: 10.2307/1970830 · Zbl 0237.57001
[5] Bohnenblust F., Ann. Math. 48 pp 127– (1947) · Zbl 0030.17801
[6] Chow W.-L., Ann. Math. 49 pp 654– (1948) · Zbl 0033.01002
[7] DOI: 10.1016/0021-8693(87)90229-8 · Zbl 0628.20029
[8] DOI: 10.1515/advg.2005.5.4.607 · Zbl 1156.20033
[9] DOI: 10.2140/pjm.2005.221.1 · Zbl 1147.20033
[10] Dehornoy P., Sér. I 309 pp 143– (1989)
[11] Dehornoy P., J. Pure Appl. Algebra 61 pp 123– (1989) · Zbl 0686.20041
[12] DOI: 10.2307/2154598 · Zbl 0837.20048
[13] DOI: 10.2140/pjm.1999.191.49 · Zbl 1009.20042
[14] Funk J., Theory Appl. Categ. 9 pp 121– (2001)
[15] Larue D. M., Algebra Universalis 31 pp 104– (1994) · Zbl 0793.08007
[16] Magnus W., Math. Ann. 109 pp 617– (1934) · Zbl 0009.03901
[17] Manfredini S., Topology Appl. 78 pp 123– (1997) · Zbl 0965.20016
[18] Perron B., Math. Ann. 306 pp 231– (1996) · Zbl 0863.32013
[19] Short H., Enseign. Math. 46 pp 279– (2000)
[20] Shpilrain V., Internat. J. Algebra Comput. 11 pp 773– (2001) · Zbl 1024.20036
[21] DOI: 10.1016/0040-9383(92)90029-H · Zbl 0758.57008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.