Mishra, A. K.; Gochhayat, P. Invariance of some subclass of multivalent functions under a differintegral operator. (English) Zbl 1195.30028 Complex Var. Elliptic Equ. 55, No. 7, 677-689 (2010). Summary: Let \(\mathcal A_p\) denote the class of functions analytic in the open unit disc \(\mathcal U=\{z\in\mathbb C : | z|<1\}\) and given by the series\[ f(z)=z^p+\sum_{n=p+1}^\infty a_n z^n. \]For \(f\in\mathcal A_p\), let \[ \mathcal I^\lambda_{p,\delta} f(z)=z^p +\sum_{n=p+1}^\infty\bigg(\frac{p+\delta}{n+\delta}\bigg)^\lambda a_n z^n\qquad (\lambda\in \mathbb R,\; \delta>-p,\; z\in \mathcal U). \]A function \(f\in\mathcal A\) is in the class \(\mathcal S^\lambda_\delta(\alpha;A,B)\) (\(0\leq \alpha<p,\; -1\leq B<A\leq a\)) if\[ \frac{1}{p-\alpha}\bigg(\frac{z(\mathcal I^\lambda_{p,\delta}f(z))'}{\mathcal I^\lambda_{p,\delta}f(z))}-\alpha\bigg)\prec\frac{1+Az}{1+Bz}\qquad(z\in \mathcal U) \]is satisfied, where \(\prec\) stands for subordination. The main result of this article is the invariance of the class \(\mathcal S^\lambda_\delta(\alpha;A,B)\) under the operator \(\mathcal I^1_{p,\mu}\) when \(\mu\) varies. Other results include Strohäcker-Marx-like inequalities involving the operator \(\mathcal I^\lambda_{p,\delta}\). Cited in 1 ReviewCited in 3 Documents MSC: 30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) Keywords:multivalent function; differential subordination; hypergeometric function; integral operator PDF BibTeX XML Cite \textit{A. K. Mishra} and \textit{P. Gochhayat}, Complex Var. Elliptic Equ. 55, No. 7, 677--689 (2010; Zbl 1195.30028) Full Text: DOI OpenURL References: [1] Miller SS, Differential Subordinations: Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics 225 (2000) [2] DOI: 10.1016/0022-247X(82)90155-X · Zbl 0487.30007 [3] Goodman AW, Trans. Amer. Math. Soc. 68 pp 204– (1950) [4] Srivastava HM, Current Topics in Analytic Function Theory (1992) [5] DOI: 10.1090/S0002-9939-1965-0178131-2 [6] DOI: 10.1090/S0002-9947-1969-0232920-2 [7] DOI: 10.1006/jmaa.1993.1204 · Zbl 0774.30008 [8] DOI: 10.1016/j.camwa.2006.08.022 · Zbl 1132.30311 [9] Uralegadi BA, J. Math. Res. Expo. 15 pp 14– (1995) [10] DOI: 10.1016/0022-247X(72)90081-9 · Zbl 0246.30031 [11] Li JL, Soochow J. Math. 25 pp 91– (1999) [12] Liu JL, Chinese Quar. J. Math. 15 pp 27– (2000) [13] Özkan Ö, J. Inequal. Appl. pp 1– (2006) [14] Patel J, Indian J. Pure. Appl. Math. 35 pp 1167– (2004) [15] DOI: 10.1155/IJMMS/2006/94572 · Zbl 1137.30006 [16] Whittaker ET, A Course on Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions,, 4. ed. (1927) · JFM 53.0180.04 [17] DOI: 10.1307/mmj/1029002507 · Zbl 0439.30015 [18] DOI: 10.1090/S0002-9939-1975-0374403-3 [19] DOI: 10.1016/0022-0396(85)90082-8 · Zbl 0507.34009 [20] DOI: 10.1112/jlms/s2-21.2.287 · Zbl 0431.30007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.