Duyckaerts, Thomas; Roudenko, Svetlana Threshold solutions for the focusing 3D cubic Schrödinger equation. (English) Zbl 1195.35276 Rev. Mat. Iberoam. 26, No. 1, 1-56 (2010). This paper is devoted to the study of the focusing 3D cubic nonlinear Schrödinger equation (NLS) with \(H^1\) data, \[ i\partial_t u+\Delta u+|u|^2 u=0, u(x,t)=u_0\in H^1, x\in\mathbb{R}^3. \] More precisely, the authors study the long time dynamics (i.e., scattering and blow up in finite time) of the solutions at the mass-energy threshold, namely, when \(M[u_0] E[u_0]=M[Q] E[Q]\). Here \(Q\) is the ground state, which is the unique positive radial solution of the equation \(-Q+\Delta Q+|Q|^2Q=0\).This NLS is known to be locally well-posed in \(H^1\), and the solutions satisfy the energy and mass conservation laws \[ E[u](t)=\frac{1}{2}\int |\nabla u(x,t)|^2 dx -\frac{1}{4} \int |u(x,t)|^4 dx =E[u_0]\;, \]\[ M[u](t)=\int |u(x,t)|^2 dx =M[u_0]\;. \] In earlier works of J. Holmer and S. Roudenko [Commun. Math. Phys. 282, No. 2, 435–467 (2008; Zbl 1155.35094)] and T. Duyckaerts, J. Holmer and S. Roudenko [Math. Res. Lett. 15, No. 5–6, 1233–1250 (2008; Zbl 1171.35472)], the behavior of solutions was classified when \(M[u_0]E[u_0]< M[Q]E[Q]\).In this paper, the authors first exhibit 3 special solutions: \(e^{it}Q\) and \(Q_{\pm}\), where \(Q_{\pm}\) exponentially approach the ground state solution in the positive time direction, \(Q_+\) has finite time blow up and \(Q_-\) scatters in the negative time direction. Secondly, the authors classify solutions at this threshold and obtain that up to \(\dot H^{1/2}\) symmetries, they behave exactly as the above three special solutions, or scatter and blow up in both time directions as the solutions below the mass-energy threshold.These results are obtained by studying the spectral properties of the linearized Schrödinger operator in this mass-supercritical case, establishing relevant modulational stability and careful analysis of the exponentially decaying solutions to the linearized equation. Reviewer: Chengbo Wang (Baltimore) Cited in 6 ReviewsCited in 46 Documents MSC: 35Q55 NLS equations (nonlinear Schrödinger equations) 35P25 Scattering theory for PDEs 35B40 Asymptotic behavior of solutions to PDEs 35B44 Blow-up in context of PDEs 81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis Keywords:nonlinear Schrödinger equation; scattering; profile decomposition; blow-up Citations:Zbl 1155.35094; Zbl 1171.35472 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Bahouri, H. and Gérard, P.: Concentration effects in critical nonlinear wave equation and scattering theory. In Geometrical optics and related topics (Cortona, 1996) , 17-30. Progr. Nonlinear Differential Equations Appl. 32 . Birkhäuser Boston, Boston, MA, 1997. · Zbl 0926.35090 [2] Banica, V.: Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), no. 1, 139-170. · Zbl 1170.35528 [3] Bourgain, J.: Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Amer. Math. Soc. 12 (1999), no. 1, 145-171. JSTOR: · Zbl 0958.35126 · doi:10.1090/S0894-0347-99-00283-0 [4] Cazenave, T.: Semilinear Schrödinger equations . Courant Lecture Notes in Mathematics 10 . New York University, Courant Institute of Mathematical Sciences, New York. AMS, Providence, RI, 2003. · Zbl 1055.35003 [5] Coffman, C.V.: Uniqueness of the ground state solution for \(\Delta u-u+u^3=0\) and a variational characterization of other solutions. Arch. Rational Mech. Anal. 46 (1972), 81-95. · Zbl 0249.35029 · doi:10.1007/BF00250684 [6] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T.: Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on \(\mathbbR^3\). Comm. Pure Appl. Math. 57 (2004), no. 8, 987-1014. · Zbl 1060.35131 · doi:10.1002/cpa.20029 [7] Duyckaerts, T., Holmer, J. and Roudenko, S.: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15 (2008), no. 6, 1233-1250. · Zbl 1171.35472 · doi:10.4310/MRL.2008.v15.n6.a13 [8] Duyckaerts, T. and Merle, F.: Dynamic of threshold solutions for energy-critical NLS. To appear in Geom. Funct. Anal., 2007. · Zbl 1232.35150 · doi:10.1007/s00039-009-0707-x [9] Duyckaerts, T. and Merle, F.: Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP 2007 , no. 4, Art. ID rpn002, 67 pp. (2008). · Zbl 1159.35043 · doi:10.1093/imrp/rpn002 [10] Gérard, P.: Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var. 3 (1998), 213-233 (electronic). · Zbl 0907.46027 · doi:10.1051/cocv:1998107 [11] Gérard, P.: A critical profile decomposition for the three-dimensional cubic wave equation. Manuscript in preparation. [12] Ginibre, J. and Velo, G.: On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case; II. Scattering theory, general case. J. Funct. Anal. 32 (1979), no. 1, 1-32, 33-71. · Zbl 0396.35028 · doi:10.1016/0022-1236(79)90077-6 [13] Grillakis, M.: Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system. Comm. Pure Appl. Math. 43 (1990), no. 3, 299-333. · Zbl 0731.35010 · doi:10.1002/cpa.3160430302 [14] Holmer, J. and Roudenko, S.: On blow-up solutions to the 3D cubic nonlinear Schrödinger equation. Appl. Math. Res. Express AMRX 2007 , no. 1, Art. ID abm004, 31pp. · Zbl 1130.35361 · doi:10.1093/amrx/abm004 [15] Holmer, J. and Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Comm. Math. Phys. 282 (2008), no. 2, 435-467. · Zbl 1155.35094 · doi:10.1007/s00220-008-0529-y [16] Kenig, C.E. and Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166 (2006), no. 3, 645-675. · Zbl 1115.35125 · doi:10.1007/s00222-006-0011-4 [17] Kenig, C.E. and Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation in the radial case. Acta Math. 201 (2008), no. 2, 147-212. · Zbl 1183.35202 · doi:10.1007/s11511-008-0031-6 [18] Kenig, C.E. and Merle, F.: Scattering for \(\dotH^1/2\) bounded solutions to the cubic defocusing NLS in 3D. To appear in Trans. Amer. Math. Soc. · Zbl 1188.35180 [19] Keraani, S.: On the defect of compactness for the Strichartz estimates of the Schrödinger equations. J. Differential Equations 175 (2001), no. 2, 353-392. · Zbl 1038.35119 · doi:10.1006/jdeq.2000.3951 [20] Killip, R., Tao, T. and Visan, M.: The cubic nonlinear Schrödinger equation in two dimensions with radial data. To appear in J. Eur. Math. Soc. · Zbl 1187.35237 · doi:10.4171/JEMS/180 [21] Killip, R. and Visan, M.: The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher. To appear in Amer. J. Math. · Zbl 1208.35138 · doi:10.1353/ajm.0.0107 [22] Killip, R., Visan, M. and Zhang, X.: The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher. Anal. PDE 1 (2008), no. 2, 229-266. · Zbl 1171.35111 · doi:10.2140/apde.2008.1.229 [23] Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \(\mathbbR^n\). Arch. Rational Mech. Anal. 105 (1989), no. 3, 243-266. · Zbl 0676.35032 · doi:10.1007/BF00251502 [24] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223-283. · Zbl 0704.49004 [25] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1 (1985), no. 2, 45-121. · Zbl 0704.49006 · doi:10.4171/RMI/12 [26] Merle, F.: On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass. Comm. Pure Appl. Math. 45 (1992), no. 2, 203-254. · Zbl 0767.35084 · doi:10.1002/cpa.3160450204 [27] Merle, F.: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69 (1993), no. 2, 427-454. · Zbl 0808.35141 · doi:10.1215/S0012-7094-93-06919-0 [28] Merle, F. and Raphaël, P.: Blow up of the critical norm for some radial \(L^2\) super critical nonlinear Schrödinger equations Amer. J. Math. 130 (2008), no. 4, 945-978. · Zbl 1188.35182 · doi:10.1353/ajm.0.0012 [29] Merle, F. and Vega, L.: Compactness at blow-up time for \(L^2\) solutions of the critical nonlinear Schrödinger equation in 2D. Internat. Math. Res. Notices 1998 , no. 8, 399-425. · Zbl 0913.35126 · doi:10.1155/S1073792898000270 [30] Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55 (1977), no. 2, 149-162. · Zbl 0356.35028 · doi:10.1007/BF01626517 [31] Tao, T.: Nonlinear dispersive equations. Local and global analysis . CBMS Regional Conference Series in Mathematics 106 . Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. · Zbl 1106.35001 [32] Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1982/83), no. 4, 567-576. · Zbl 0527.35023 · doi:10.1007/BF01208265 [33] Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16 (1985), no. 3, 472-491. · Zbl 0583.35028 · doi:10.1137/0516034 [34] Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39 (1986), no. 1, 51-67. · Zbl 0594.35005 · doi:10.1002/cpa.3160390103 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.