×

Introducing variational iteration method to a biochemical reaction model. (English) Zbl 1195.65093

The paper centralizes on a newly modified version of VIM, which is generally called the multi-stage variational iteration method (MVIM). The authors discuss a convergence analysis of the MVIM for a general class of nonlinear ordinary differential equations and an application of the MVIM to biochemical models. They compare the classical VIM against the MVIM and fourth order Runge-Kutta method. Numerical results confirm the excellent performance of RK4 and MVIM.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
92C40 Biochemistry, molecular biology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Schnell, S.; Mendoza, C., Closed form solution for time-dependent enzyme kinetics, J. Theoret. Biol., 187, 207-212 (1997)
[2] Sen, A. K., An application of the Adomian decomposition method to the transient behavior of a model biochemical reaction, J. Math. Anal. Appl., 131, 232-245 (1988) · Zbl 0635.92007
[3] Hashim, I.; Chowdhury, M. S.H.; Mawa, S., On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model, Chaos Solitons Fractals, 36, 4, 823-827 (2008) · Zbl 1210.65149
[4] Abdou, M. A.; Soliman, A. A., New applications of variational iteration method, Physica D, 211, 1-8 (2005) · Zbl 1084.35539
[5] Batiha, B.; Noorani, M. S.M.; Hashim, I., Application of variational iteration method to the generalized Burgers-Huxley equation, Chaos Solitons Fractals, 36, 660-663 (2008) · Zbl 1141.49006
[6] Batiha, B.; Noorani, M. S.M.; Hashim, I.; Ismail, E. S., The multistage variational iteration method for a class of nonlinear system of ODEs, Phys. Scripta, 76, 1-5 (2007) · Zbl 1132.34008
[7] He, J. H., Variational iteration method—some recent results and new interpretations, J. Comput. Appl. Math., 207, 1, 3-17 (2007) · Zbl 1119.65049
[8] He, J. H.; Wu, X. H., Variational iteration method: New development and applications, Comput. Math. Appl., 54, 7-8, 881-894 (2007) · Zbl 1141.65372
[9] Inc, M., Numerical simulation of KdV and mKdV equations with initial conditions by the variational iteration method, Chaos Solitons Fractals, 34, 4, 1075-1081 (2007) · Zbl 1142.35572
[10] Momani, S.; Odibat, Z., Numerical comparisons of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, 31, 1248-1255 (2007) · Zbl 1137.65450
[11] Moghimi, M.; Hejazi, F. S.A., Variational iteration method for solving generalized Burger-Fisher and Burger equations, Chaos Solitons Fractals, 33, 1756-1761 (2007) · Zbl 1138.35398
[12] Wazwaz, A. M., A study on linear and nonlinear Schrodinger equations by the variational iteration method, Chaos Solitons Fractals, 37, 4, 1136-1142 (2008) · Zbl 1148.35353
[13] Al-Sawalha, M. M.; Noorani, M. S.M.; Hashim, I., On accuracy of Adomian decomposition method for hyperchaotic Rössler system, Chaos Solitons Fractals, 40, 4, 1801-1807 (2009) · Zbl 1198.65131
[14] Hashim, I.; Noorani, M. S.M.; Ahmad, R.; Bakar, S. A.; Ismail, E. S.; Zakaria, A. M., Accuracy of the Adomian decomposition method applied to the Lorenz system, Chaos Solitons Fractals, 28, 1149-1158 (2006) · Zbl 1096.65066
[15] Noorani, M. S.M.; Hashim, I.; Ahmad, R.; Bakar, S. A.; Ismail, E. S.; Zakaria, A. M., Comparing numerical methods for the solutions of the Chen system, Chaos Solitons Fractals, 32, 1296-1304 (2007) · Zbl 1131.65101
[16] Al-Sawalha, M. M.; Noorani, M. S.M., Application of the differential transformation method for the solution of the hyperchaotic Rössler system, Comm. Non. Sci. Num. Simul., 14, 1509-1514 (2009)
[17] Allan, F. M., Construction of analytic solution to chaotic dynamical systems using the Homotopy analysis method, Chaos Solitons Fractals, 39, 4, 1744-1752 (2009) · Zbl 1197.65102
[18] Chowdhury, M. S.H.; Hashim, I., Application of multistage homotopy-perturbation method for the solutions of the Chen system, Nonlinear Anal. RWA, 10, 381-391 (2009) · Zbl 1154.65350
[19] He, J. H., Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons Fractals, 26, 695-700 (2005) · Zbl 1072.35502
[20] He, J. H., Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. Nonlinear Sci. Numer. Simul., 6, 207-208 (2005) · Zbl 1401.65085
[21] Yamaguti, M.; Ushiki, S., Chaos in numerical analysis of ordinary differential equations, Physica D, 3, 618-626 (1981) · Zbl 1194.37064
[22] Das, S., Solution of fractional vibration equation by the variational iteration method and modified decomposition method, Int. J. Nonlinear Sci. Numer. Simul., 9, 4, 361-366 (2008)
[23] Mokhtari, R., Variational iteration method for solving nonlinear differential-difference equations, Int. J. Nonlinear Sci. Numer. Simul., 9, 19-23 (2008) · Zbl 1401.65152
[24] Soltanian, F.; Karbassi, S. M.; Hosseini, M. M., Application of He’s variational iteration method for solution of differential-algebraic equations, Chaos Solitons Fractals, 41, 1, 436-445 (2009) · Zbl 1198.65154
[25] Ghorbani, A.; Saberi-Nadjafi, J., An effective modification of He’s variational iteration method, Nonlinear Anal. RWA, 10, 5, 2828-2833 (2009) · Zbl 1168.45301
[26] Abbasbandy, S., An approximation solution of a nonlinear equation with Riemann-Liouville’s fractional derivatives by He’s variational iteration method, J. Comput. Appl. Math., 207, 1, 53-58 (2007) · Zbl 1120.65133
[27] Abbasbandy, S., A new application of He’s variational iteration method for quadratic Riccati differential equation by using Adomian’s polynomials, J. Comput. Appl. Math., 207, 1, 59-63 (2007) · Zbl 1120.65083
[28] Goh, S. M.; Noorani, M. S.M.; Hashim, I., Efficacy of variational iteration method for chaotic Genesio system — Classical and multistage approach, Chaos Solitons Fractals, 40, 5, 2152-2159 (2009) · Zbl 1198.65140
[29] Goh, S. M.; Ismail, A. I.M.; Noorani, M. S.M.; Hashim, I., Dynamics of the Hantavirus infection through variational iteration method, Nonlinear Anal. RWA, 10, 4, 2171-2176 (2009) · Zbl 1163.92326
[30] Goh, S. M.; Noorani, M. S.M.; Hashim, I.; Al-Sawalha, M. M., Variational iteration method as a reliable treatment for the hyperchaotic Rössler system, Int. J. Nonlinear Sci. Numer. Simul., 10, 3, 363-371 (2009)
[31] Goh, S. M.; Noorani, M. S.M.; Hashim, I., Prescribing a multistage analytical method to a prey-predator dynamical system, Phys. Lett. A, 373, 107-110 (2008) · Zbl 1227.34017
[32] He, J. H., Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern Phys. B, 20, 10, 1141-1199 (2007) · Zbl 1102.34039
[34] He, J. H., An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering, Internat. J. Modern. Phys. B, 22, 21, 3487-3578 (2008) · Zbl 1149.76607
[35] Inokuti, M.; Sekine, H.; Mura, T., General use of the Lagrange multiplier in nonlinear mathematical physics, (Nemat-Nassed, S., Variational Method in the Mechanics of Solids (1978), Pergamon Press), 156-162
[36] Ghorbani, A., Beyond Adomian’s polynomials: He polynomials, Chaos Solitons Fractals, 39, 1486-1492 (2009) · Zbl 1197.65061
[37] Noor, M. A.; Mohyud-Din, S. T., Variational iteration method for solving higher-order nonlinear boundary value problems using He’s polynomials, Int. J. Nonlinear Sci. Numer. Simul., 9, 141-156 (2008)
[38] Mohyud-Din, S. T.; Noor, M. A.; Noor, K. I., Traveling wave solutions of seventh-order generalized kdv equations using He’s polynomials, Int. J. Nonlinear Sci. Numer. Simul., 10, 227-233 (2009)
[39] Ghorbani, A.; Saberi-Nadjafi, J., Exact solutions for nonlinear integral equations by a modified homotopy perturbation method, Comput. Math. Appl., 56, 1032-1039 (2008) · Zbl 1155.45300
[40] Wazwaz, A., A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111, 53-69 (2000) · Zbl 1023.65108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.