×

Homotopy perturbation method for solving boundary value problems. (English) Zbl 1195.65207


MSC:

65N99 Numerical methods for partial differential equations, boundary value problems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] He, J. H., Perturbation Methods: Basic and Beyond (2006), Elsevier: Elsevier Amsterdam
[2] Pamuk, S., Phys. Lett. A, 344, 184 (2005)
[3] Abassy, T. A.; El-Tawil, M. A.; Saleh, H. K., Int. J. Nonlinear Sci. Numer. Simulation, 5, 327 (2004)
[4] El-Sayed, S. M.; Kaya, D.; Zarea, S., Int. J. Nonlinear Sci. Numer. Simulation, 5, 105 (2004)
[5] El-Danaf, T. S.; Ramadan, M. A., Chaos Solitons Fractals, 26, 747 (2005)
[7] He, J. H., Commun. Nonlinear Sci. Numer. Simulation, 2, 230 (1997)
[8] Wazwaz, A. M., Found. Phys. Lett., 13, 493 (2000)
[9] Abdou, M. A.; Soliman, A. A., J. Comput. Appl. Math., 181, 245 (2005)
[10] Momani, S.; Abuasad, S., Chaos Solitons Fractals, 27, 5, 1119 (2006)
[11] He, J. H., Int. J. Nonlinear Mech., 34, 699 (1999)
[12] He, J. H., Chaos Solitons Fractals, 26, 695 (2005)
[13] He, J. H., Int. J. Nonlinear Sci. Numer. Simulation, 6, 207 (2005)
[14] He, J. H., Int. J. Nonlinear Mech., 35, 37 (2000)
[15] El-Shahed, M., Int. J. Nonlinear Sci. Numer. Simulation, 6, 163 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.