zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. (English) Zbl 1195.74199
Summary: The application of the extended finite element method (XFEM) to fracture mechanics problems enables one to obtain accurate solutions more efficiently than with the standard finite element method. A component can be modelled without the need to build a mesh that matches the crack geometry, and thus remeshing as the crack grows is unnecessary. In the XFEM approach, the interpolation on certain elements is enriched with functions that make it feasible to represent the crack tip asymptotic displacement fields by using a local partition of unity method. However, the enrichment is only partial in the blending elements connecting the enriched zone with the rest of the mesh, and consequently pathological terms appear in the interpolation, which lead to increased error. In this study we propose enhancing the blending elements by adding hierarchical shape functions where appropriate; this permits compensating for the unwanted terms in the interpolation. This technique is an extension of the study of {\it J. Chessa, H. Wang} and {\it T. Belytschko} [Int. J. Numer. Methods Eng. 57, No. 7, 1015--1038 (2003; Zbl 1035.65122)] to fracture mechanics problems. The numerical results show that the proposed enhancement always results in greater accuracy. Moreover, enhancing the blending elements makes it possible to recover the convergence rate that is decreased when the degrees of freedom gathering technique is used to improve the condition number of the stiffness matrix.

74S05Finite element methods in solid mechanics
74R10Brittle fracture
74B05Classical linear elasticity
Full Text: DOI