zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A novel numerical technique for two-dimensional laminar flow between two moving porous walls. (English) Zbl 1195.76387
Summary: We investigate the steady two-dimensional flow of a viscous incompressible fluid in a rectangular domain that is bounded by two permeable surfaces. The governing fourth-order nonlinear differential equation is solved by applying the spectral-homotopy analysis method and a novel successive linearisation method. Semianalytical results are obtained and the convergence rate of the solution series was compared with numerical approximations and with earlier results where the homotopy analysis and homotopy perturbation methods were used. We show that both the spectral-homotopy analysis method and successive linearisation method are computationally efficient and accurate in finding solutions of nonlinear boundary value problems.

76S05Flows in porous media; filtration; seepage
Full Text: DOI EuDML
[1] E. C. Dauenhauer and J. Majdalani, “Exact self-similarity solution of the Navier-Stokes equations for a porous channel with orthogonally moving walls,” Physics of Fluids, vol. 15, no. 6, pp. 1485-1495, 2003. · Zbl 1186.76126 · doi:10.1063/1.1567719
[2] S. Dinarvand, A. Doosthoseini, E. Doosthoseini, and M. M. Rashidi, “Comparison of HAM and HPM methods for Berman’s model of two-dimensional viscous flow in porous channel with wall suction or injection,” Advances in Theoretical and Applied Mechanics, vol. 1, no. 7, pp. 337-347, 2008. · Zbl 1276.76051
[3] J. Majdalani, “The oscillatory channel flow with arbitrary wall injection,” Zeitschrift für Angewandte Mathematik und Physik, vol. 52, no. 1, pp. 33-61, 2001. · Zbl 1172.76368 · doi:10.1007/PL00001539
[4] J. Majdalani and T.-S. Roh, “The oscillatory channel flow with large wall injection,” Proceedings of the Royal Society of London. Series A, vol. 456, no. 1999, pp. 1625-1657, 2000. · Zbl 1030.76012 · doi:10.1098/rspa.2000.0579
[5] J. Majdalani and W. K. van Moorhem, “Multiple-scales solution to the acoustic boundary layer in solid rocket motors,” Journal of Propulsion and Power, vol. 13, no. 2, pp. 186-193, 1997.
[6] J. Majdalani and C. Zhou, “Moderate-to-large injection and suction driven channel flows with expanding or contracting walls,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 83, no. 3, pp. 181-196, 2003. · Zbl 1116.76348 · doi:10.1002/zamm.200310018
[7] L. Oxarango, P. Schmitz, and M. Quintard, “Laminar flow in channels with wall suction or injection: a new model to study multi-channel filtration systems,” Chemical Engineering Science, vol. 59, no. 5, pp. 1039-1051, 2004. · doi:10.1016/j.ces.2003.10.027
[8] A. S. Berman, “Laminar flow in channels with porous walls,” Journal of Applied Physics, vol. 24, pp. 1232-1235, 1953. · Zbl 0050.41101 · doi:10.1063/1.1721476
[9] J. F. Brady, “Flow development in a porous channel and tube,” Physics of Fluids, vol. 27, no. 5, pp. 1061-1076, 1984.
[10] S. M. Cox, “Two-dimensional flow of a viscous fluid in a channel with porous walls,” Journal of Fluid Mechanics, vol. 227, pp. 1-33, 1991. · Zbl 0721.76080 · doi:10.1017/S0022112091000010
[11] S. P. Hastings, C. Lu, and A. D. MacGillivray, “A boundary value problem with multiple solutions from the theory of laminar flow,” SIAM Journal on Mathematical Analysis, vol. 23, no. 1, pp. 201-208, 1992. · Zbl 0749.34014 · doi:10.1137/0523010
[12] T. A. Jankowski and J. Majdalani, “Symmetric solutions for the oscillatory channel flow with arbitrary suction,” Journal of Sound and Vibration, vol. 294, no. 4, pp. 880-893, 2006. · doi:10.1016/j.jsv.2005.12.035
[13] T. A. Jankowski and J. Majdalani, “Laminar flow in a porous channel with large wall suction and a weakly oscillatory pressure,” Physics of Fluids, vol. 14, no. 3, pp. 1101-1110, 2002. · doi:10.1063/1.1445419
[14] C. Lu, “On the asymptotic solution of laminar channel flow with large suction,” SIAM Journal on Mathematical Analysis, vol. 28, no. 5, pp. 1113-1134, 1997. · Zbl 0886.34053 · doi:10.1137/S0036141096297704
[15] R. M. Terrill, “Laminar flow in a uniformly porous channel,” The Aeronautical Quarterly, vol. 15, pp. 299-310, 1964.
[16] S. Uchida and H. Aoki, “Unsteady flows in a semi-infinite contracting or expanding pipe,” Journal of Fluid Mechanics, vol. 82, no. 2, pp. 371-387, 1977. · Zbl 0367.76100 · doi:10.1017/S0022112077000718
[17] C. Zhou and J. Majdalani, “Improved mean-flow solution for slab rocket motors with regressing walls,” Journal of Propulsion and Power, vol. 18, no. 3, pp. 703-711, 2002.
[18] G. Adomian, “Nonlinear stochastic differential equations,” Journal of Mathematical Analysis and Applications, vol. 55, no. 2, pp. 441-452, 1976. · Zbl 0351.60053 · doi:10.1016/0022-247X(76)90174-8
[19] G. Adomian, “A review of the decomposition method and some recent results for nonlinear equations,” Computers & Mathematics with Applications, vol. 21, no. 5, pp. 101-127, 1991. · Zbl 0758.35003 · doi:10.1016/0898-1221(91)90018-Y
[20] J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 2000. · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[21] J.-H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87-88, 2006. · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[22] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis, Shanghai Jiao Tong University, 1992.
[23] S. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method, vol. 2 of CRC Series: Modern Mechanics and Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2004. · Zbl 1051.76001
[24] H. Xu, Z. L. Lin, S. J. Liao, J. Z. Wu, and J. Majdalani, “Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonally moving walls,” Physics of Fluids, vol. 22, Article ID 053601, 18 pages, 2010. · Zbl 1190.76132 · doi:10.1063/1.3392770
[25] M. B. Zaturska, P. G. Drazin, and W. H. H. Banks, “On the flow of a viscous fluid driven along a channel by suction at porous walls,” Fluid Dynamics Research, vol. 4, no. 3, pp. 151-178, 1988.
[26] S. S. Motsa, P. Sibanda, and S. Shateyi, “A new spectral-homotopy analysis method for solving a nonlinear second order BVP,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 9, pp. 2293-2302, 2010. · Zbl 1222.65090 · doi:10.1016/j.cnsns.2009.09.019
[27] S. S. Motsa, P. Sibanda, F. G. Awad, and S. Shateyi, “A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem,” Computers and Fluids, vol. 39, no. 7, pp. 1219-1225, 2010. · Zbl 1242.76363 · doi:10.1016/j.compfluid.2010.03.004
[28] Z. Makukula, S. S. Motsa, and P. Sibanda, “On a new solution for the viscoelastic squeezing flow between two parallel plates,” Journal of Advanced Research in Applied Mathematics, vol. 2, no. 4, pp. 31-38, 2010.
[29] S. S. Motsa and P. Sibanda, “A new algorithm for solving singular IVPs of Lane-Emden type,” in Proceedings of the 4th International Conference on Applied Mathematics, Simulation, Modelling, WSEAS International Conferences, pp. 176-180, Corfu Island, Greece, July 2010.
[30] S. Dinarvand and M. M. Rashidi, “A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in a rectangular domain bounded by two moving porous walls,” Nonlinear Analysis: Real World Applications, vol. 11, no. 3, pp. 1502-1512, 2010. · Zbl 1189.35249 · doi:10.1016/j.nonrwa.2009.03.006
[31] J. Majdalani, C. Zhou, and C. A. Dawson, “Two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability,” Journal of Biomechanics, vol. 35, no. 10, pp. 1399-1403, 2002. · doi:10.1016/S0021-9290(02)00186-0
[32] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer, New York, NY, USA, 1988. · Zbl 0658.76001
[33] L. N. Trefethen, Spectral Methods in MATLAB, vol. 10 of Software, Environments, and Tools, SIAM, Philadelphia, Pa, USA, 2000. · Zbl 0953.68643 · doi:10.1137/1.9780898719598