[1] |
E. C. Dauenhauer and J. Majdalani, “Exact self-similarity solution of the Navier-Stokes equations for a porous channel with orthogonally moving walls,” Physics of Fluids, vol. 15, no. 6, pp. 1485-1495, 2003. · Zbl 1186.76126
· doi:10.1063/1.1567719 |

[2] |
S. Dinarvand, A. Doosthoseini, E. Doosthoseini, and M. M. Rashidi, “Comparison of HAM and HPM methods for Berman’s model of two-dimensional viscous flow in porous channel with wall suction or injection,” Advances in Theoretical and Applied Mechanics, vol. 1, no. 7, pp. 337-347, 2008. · Zbl 1276.76051 |

[3] |
J. Majdalani, “The oscillatory channel flow with arbitrary wall injection,” Zeitschrift für Angewandte Mathematik und Physik, vol. 52, no. 1, pp. 33-61, 2001. · Zbl 1172.76368
· doi:10.1007/PL00001539 |

[4] |
J. Majdalani and T.-S. Roh, “The oscillatory channel flow with large wall injection,” Proceedings of the Royal Society of London. Series A, vol. 456, no. 1999, pp. 1625-1657, 2000. · Zbl 1030.76012
· doi:10.1098/rspa.2000.0579 |

[5] |
J. Majdalani and W. K. van Moorhem, “Multiple-scales solution to the acoustic boundary layer in solid rocket motors,” Journal of Propulsion and Power, vol. 13, no. 2, pp. 186-193, 1997. |

[6] |
J. Majdalani and C. Zhou, “Moderate-to-large injection and suction driven channel flows with expanding or contracting walls,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 83, no. 3, pp. 181-196, 2003. · Zbl 1116.76348
· doi:10.1002/zamm.200310018 |

[7] |
L. Oxarango, P. Schmitz, and M. Quintard, “Laminar flow in channels with wall suction or injection: a new model to study multi-channel filtration systems,” Chemical Engineering Science, vol. 59, no. 5, pp. 1039-1051, 2004.
· doi:10.1016/j.ces.2003.10.027 |

[8] |
A. S. Berman, “Laminar flow in channels with porous walls,” Journal of Applied Physics, vol. 24, pp. 1232-1235, 1953. · Zbl 0050.41101
· doi:10.1063/1.1721476 |

[9] |
J. F. Brady, “Flow development in a porous channel and tube,” Physics of Fluids, vol. 27, no. 5, pp. 1061-1076, 1984. |

[10] |
S. M. Cox, “Two-dimensional flow of a viscous fluid in a channel with porous walls,” Journal of Fluid Mechanics, vol. 227, pp. 1-33, 1991. · Zbl 0721.76080
· doi:10.1017/S0022112091000010 |

[11] |
S. P. Hastings, C. Lu, and A. D. MacGillivray, “A boundary value problem with multiple solutions from the theory of laminar flow,” SIAM Journal on Mathematical Analysis, vol. 23, no. 1, pp. 201-208, 1992. · Zbl 0749.34014
· doi:10.1137/0523010 |

[12] |
T. A. Jankowski and J. Majdalani, “Symmetric solutions for the oscillatory channel flow with arbitrary suction,” Journal of Sound and Vibration, vol. 294, no. 4, pp. 880-893, 2006.
· doi:10.1016/j.jsv.2005.12.035 |

[13] |
T. A. Jankowski and J. Majdalani, “Laminar flow in a porous channel with large wall suction and a weakly oscillatory pressure,” Physics of Fluids, vol. 14, no. 3, pp. 1101-1110, 2002.
· doi:10.1063/1.1445419 |

[14] |
C. Lu, “On the asymptotic solution of laminar channel flow with large suction,” SIAM Journal on Mathematical Analysis, vol. 28, no. 5, pp. 1113-1134, 1997. · Zbl 0886.34053
· doi:10.1137/S0036141096297704 |

[15] |
R. M. Terrill, “Laminar flow in a uniformly porous channel,” The Aeronautical Quarterly, vol. 15, pp. 299-310, 1964. |

[16] |
S. Uchida and H. Aoki, “Unsteady flows in a semi-infinite contracting or expanding pipe,” Journal of Fluid Mechanics, vol. 82, no. 2, pp. 371-387, 1977. · Zbl 0367.76100
· doi:10.1017/S0022112077000718 |

[17] |
C. Zhou and J. Majdalani, “Improved mean-flow solution for slab rocket motors with regressing walls,” Journal of Propulsion and Power, vol. 18, no. 3, pp. 703-711, 2002. |

[18] |
G. Adomian, “Nonlinear stochastic differential equations,” Journal of Mathematical Analysis and Applications, vol. 55, no. 2, pp. 441-452, 1976. · Zbl 0351.60053
· doi:10.1016/0022-247X(76)90174-8 |

[19] |
G. Adomian, “A review of the decomposition method and some recent results for nonlinear equations,” Computers & Mathematics with Applications, vol. 21, no. 5, pp. 101-127, 1991. · Zbl 0758.35003
· doi:10.1016/0898-1221(91)90018-Y |

[20] |
J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 2000. · Zbl 1068.74618
· doi:10.1016/S0020-7462(98)00085-7 |

[21] |
J.-H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87-88, 2006. · Zbl 1195.65207
· doi:10.1016/j.physleta.2005.10.005 |

[22] |
S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis, Shanghai Jiao Tong University, 1992. |

[23] |
S. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method, vol. 2 of CRC Series: Modern Mechanics and Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2004. · Zbl 1051.76001 |

[24] |
H. Xu, Z. L. Lin, S. J. Liao, J. Z. Wu, and J. Majdalani, “Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonally moving walls,” Physics of Fluids, vol. 22, Article ID 053601, 18 pages, 2010. · Zbl 1190.76132
· doi:10.1063/1.3392770 |

[25] |
M. B. Zaturska, P. G. Drazin, and W. H. H. Banks, “On the flow of a viscous fluid driven along a channel by suction at porous walls,” Fluid Dynamics Research, vol. 4, no. 3, pp. 151-178, 1988. |

[26] |
S. S. Motsa, P. Sibanda, and S. Shateyi, “A new spectral-homotopy analysis method for solving a nonlinear second order BVP,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 9, pp. 2293-2302, 2010. · Zbl 1222.65090
· doi:10.1016/j.cnsns.2009.09.019 |

[27] |
S. S. Motsa, P. Sibanda, F. G. Awad, and S. Shateyi, “A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem,” Computers and Fluids, vol. 39, no. 7, pp. 1219-1225, 2010. · Zbl 1242.76363
· doi:10.1016/j.compfluid.2010.03.004 |

[28] |
Z. Makukula, S. S. Motsa, and P. Sibanda, “On a new solution for the viscoelastic squeezing flow between two parallel plates,” Journal of Advanced Research in Applied Mathematics, vol. 2, no. 4, pp. 31-38, 2010. |

[29] |
S. S. Motsa and P. Sibanda, “A new algorithm for solving singular IVPs of Lane-Emden type,” in Proceedings of the 4th International Conference on Applied Mathematics, Simulation, Modelling, WSEAS International Conferences, pp. 176-180, Corfu Island, Greece, July 2010. |

[30] |
S. Dinarvand and M. M. Rashidi, “A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in a rectangular domain bounded by two moving porous walls,” Nonlinear Analysis: Real World Applications, vol. 11, no. 3, pp. 1502-1512, 2010. · Zbl 1189.35249
· doi:10.1016/j.nonrwa.2009.03.006 |

[31] |
J. Majdalani, C. Zhou, and C. A. Dawson, “Two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability,” Journal of Biomechanics, vol. 35, no. 10, pp. 1399-1403, 2002.
· doi:10.1016/S0021-9290(02)00186-0 |

[32] |
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer, New York, NY, USA, 1988. · Zbl 0658.76001 |

[33] |
L. N. Trefethen, Spectral Methods in MATLAB, vol. 10 of Software, Environments, and Tools, SIAM, Philadelphia, Pa, USA, 2000. · Zbl 0953.68643
· doi:10.1137/1.9780898719598 |