##
**Effects of slip and heat generation/absorption on MHD mixed convection flow of a micropolar fluid over a heated stretching surface.**
*(English)*
Zbl 1195.76434

Summary: A theoretical analysis is performed to study the flow and heat transfer characteristics of magnetohydrodynamic mixed convection flow of a micropolar fluid past a stretching surface with slip velocity at the surface and heat generation (absorption). The transformed equations solved numerically using the Chebyshev spectral method. Numerical results for the velocity, the angular velocity, and the temperature for various values of different parameters are illustrated graphically. Also, the effects of various parameters on the local skin-friction coefficient and the local Nusselt number are given in tabular form and discussed. The results show that the mixed convection parameter has the effect of enhancing both the velocity and the local Nusselt number and suppressing both the local skin-friction coefficient and the temperature. It is found that local skin-friction coefficient increases while the local Nusselt number decreases as the magnetic parameter increases. The results show also that increasing the heat generation parameter leads to a rise in both the velocity and the temperature and a fall in the local skin-friction coefficient and the local Nusselt number. Furthermore, it is shown that the local skin-friction coefficient and the local Nusselt number decrease when the slip parameter increases.

### MSC:

76W05 | Magnetohydrodynamics and electrohydrodynamics |

80A20 | Heat and mass transfer, heat flow (MSC2010) |

PDFBibTeX
XMLCite

\textit{M. Mahmoud} and \textit{S. Waheed}, Math. Probl. Eng. 2010, Article ID 579162, 20 p. (2010; Zbl 1195.76434)

### References:

[1] | A. C. Eringen, “Theory of micropolar fluids,” Journal of Mathematics and Mechanics, vol. 16, pp. 1-18, 1966. · Zbl 0145.21302 |

[2] | A. C. Eringen, “Theory of thermo micropolar fluids,” Journal of Applied Mathematics, vol. 38, pp. 480-495, 1972. · Zbl 0241.76012 · doi:10.1016/0022-247X(72)90106-0 |

[3] | J. D. Lee and A. C. Eringen, “Wave propagation in nematic liquid crystals,” The Journal of Chemical Physics, vol. 54, no. 12, pp. 5027-5034, 1971. |

[4] | J. D. Lee and A. C. Eringen, “Boundary effects of orientation of nematic liquid crystals,” The Journal of Chemical Physics, vol. 55, no. 9, pp. 4509-4512, 1971. |

[5] | T. Ariman, M. A. Turk, and N. D. Sylvester, “Applications of microcontinuum fluid mechanics,” International Journal of Engineering Science, vol. 12, no. 4, pp. 273-293, 1974. · Zbl 0273.76003 · doi:10.1016/0020-7225(74)90059-7 |

[6] | T. Ariman, M. A. Turk, and N. D. Sylvester, “Microcontinuum fluid mechanics-a review,” International Journal of Engineering Science, vol. 11, no. 8, pp. 905-915, 1973. · Zbl 0259.76001 |

[7] | K. A. Kline and S. J. Allen, “Pulsatile blood flow investigation of particle concentration effects,” Biorheology, vol. 6, pp. 99-110, 1969. |

[8] | T. Ariman, “On the analysis of blood flow,” Journal of Biomechanics, vol. 4, no. 3, pp. 185-192, 1971. |

[9] | T. Ariman, “Heat conduction in blood,” in Proceedings of the ASCE Engineering Mechanics Division Specialty Conference, January 1971. · Zbl 0226.76003 |

[10] | J. C. Misra and K. Roychoudhury, “Non linear stress field in blood vessels under the actionof connective tissues,” Blood Vessels, vol. 19, pp. 19-29, 1982. |

[11] | Y. Y. Lok, N. Amin, and I. Pop, “Unsteady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface,” International Journal of Thermal Sciences, vol. 45, no. 12, pp. 1149-1157, 2006. · Zbl 1106.76064 · doi:10.1016/j.ijthermalsci.2006.01.015 |

[12] | K. Chandra, “Instability of fluids heated from below,” Proceedings of the Royal Society A, vol. 164, pp. 231-224, 1938. |

[13] | S. Allen and K. Kline, “Lubrication theory for micropolar fluids,” Journal of Applied Mechanics, vol. 38, pp. 646-656, 1971. · Zbl 0217.24705 · doi:10.1115/1.3408868 |

[14] | M. M. Khonsari, “On the self-excited whirl orbits of a journal in a sleeve bearing lubricated with micropolar fluids,” Acta Mechanica, vol. 81, no. 3-4, pp. 235-244, 1990. · Zbl 0698.76006 · doi:10.1007/BF01176991 |

[15] | J. Prakash and P. Sinha, “Lubrication theory for micropolar fluids and its application to a journal bearing,” International Journal of Engineering Science, vol. 13, no. 3, pp. 217-232, 1975. · Zbl 0294.76001 · doi:10.1016/0020-7225(75)90031-2 |

[16] | N. Tipei, “Lubrication with micropolar liquids and its application to short bearings,” Journal of Lubrication Technology, vol. 101, no. 3, pp. 356-363, 1979. |

[17] | Y. J. Kim and A. G. Fedorov, “Transient mixed radiative convection flow of a micropolar fluid past a moving, semi-infinite vertical porous plate,” International Journal of Heat and Mass Transfer, vol. 46, no. 10, pp. 1751-1758, 2003. · Zbl 1027.76657 · doi:10.1016/S0017-9310(02)00482-9 |

[18] | R. Bhargava, L. Kumar, and H. S. Takhar, “Mixed convection from a continuous surface in a parallel moving stream of a micropolar fluid,” Heat and Mass Transfer, vol. 39, no. 5-6, pp. 407-413, 2003. · Zbl 1211.76068 |

[19] | M. M. Rahman and M. A. Sattar, “Transient convective flow of micropolar fluid past a continuouslymoving vertical porous plate in the presence of radiation,” International Journal of Applied Mechanics and Engineering, vol. 12, pp. 497-513, 2007. |

[20] | M. M. Rahman and M. A. Sattar, “Magnetohydrodynamic convective flow of a micropolar fluid past a continuously moving vertical porous plate in the presence of heat generation/absorption,” Journal of Heat Transfer, vol. 128, no. 2, pp. 142-152, 2006. · doi:10.1115/1.2136918 |

[21] | A. Ishak, R. Nazar, and I. Pop, “Heat transfer over a stretching surface with variable heat flux in micropolar fluids,” Physics Letters A, vol. 372, no. 5, pp. 559-561, 2008. · Zbl 1217.76015 · doi:10.1016/j.physleta.2007.08.003 |

[22] | A. Ishak, R. Nazar, and I. Pop, “Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet,” Meccanica, vol. 43, no. 4, pp. 411-418, 2008. · Zbl 1163.76411 · doi:10.1007/s11012-007-9103-5 |

[23] | A. Ishak, R. Nazar, and I. Pop, “Magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point on a vertical surface,” Computers and Mathematics with Applications, vol. 56, no. 12, pp. 3188-3194, 2008. · Zbl 1165.76309 · doi:10.1016/j.camwa.2008.09.013 |

[24] | A. Ishak, Y. Y. Lok, and I. Pop, “Stagnation-point flow over a shrinking sheet in a micropolarfluid,” Chemical Engineering Communications, vol. 197, pp. 1417-1427, 2010. |

[25] | T. Hayat, Z. Abbas, and T. Javed, “Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet,” Physics Letters A, vol. 372, no. 5, pp. 637-647, 2008. · Zbl 1217.76014 · doi:10.1016/j.physleta.2007.08.006 |

[26] | C. L. M. Navier, “Sur les lois du mouvement des fluides,” Memoires de l’Academie Royale des Sciences, vol. 6, pp. 389-440, 1827. |

[27] | P. D. Ariel, T. Hayat, and S. Asghar, “The flow of an elastico-viscous fluid past a stretching sheet with partial slip,” Acta Mechanica, vol. 187, no. 1-4, pp. 29-35, 2006. · Zbl 1103.76010 · doi:10.1007/s00707-006-0370-3 |

[28] | T. Hayat, T. Javed, and Z. Abbas, “Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space,” International Journal of Heat and Mass Transfer, vol. 51, no. 17-18, pp. 4528-4534, 2008. · Zbl 1144.80316 · doi:10.1016/j.ijheatmasstransfer.2007.12.022 |

[29] | T. Hayat, M. Khan, and M. Ayub, “The effect of the slip condition on flows of an Oldroyd 6-constant fluid,” Journal of Computational and Applied Mathematics, vol. 202, no. 2, pp. 402-413, 2007. · Zbl 1147.76550 · doi:10.1016/j.cam.2005.10.042 |

[30] | R. I. Tanner, “Partial wall slip in polymer flow,” Industrial and Engineering Chemistry Research, vol. 33, no. 10, pp. 2434-2436, 1994. |

[31] | C. Le Roux, “Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions,” Archive for Rational Mechanics and Analysis, vol. 148, no. 4, pp. 309-356, 1999. · Zbl 0934.76005 · doi:10.1007/s002050050164 |

[32] | K. Vajravelu and A. Hadjinicolaou, “Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream,” International Journal of Engineering Science, vol. 35, no. 12-13, pp. 1237-1244, 1997. · Zbl 0907.76084 · doi:10.1016/S0020-7225(97)00031-1 |

[33] | M. A. Delichatsios, “Air entrainment into buoyant jet flames and pool fires,” Combustion and Flame, vol. 70, no. 1, pp. 33-46, 1987. |

[34] | J. C. Crepeau and R. Clarksean, “Similarity solutions of natural convection with internal heat generation,” Journal of Heat Transfer, vol. 119, no. 1, pp. 183-185, 1997. |

[35] | R. C. Bataller, “Effects of heat source/sink, radiation and work done by deformation on flow and heat transfer of a viscoelastic fluid over a stretching sheet,” Computers and Mathematics with Applications, vol. 53, no. 2, pp. 305-316, 2007. · Zbl 1138.80003 · doi:10.1016/j.camwa.2006.02.041 |

[36] | G. Ahmadi, “Self-similar solution of incompressible micropolar boundary layer flow over asemi-infinite plate,” International Journal of Engineering Science, vol. 14, pp. 639-646, 1976. · Zbl 0329.76041 · doi:10.1016/0020-7225(76)90006-9 |

[37] | K. A. Kline, “A spin-vorticity relation for unidirectional plane flows of micropolar fluids,” International Journal of Engineering Science, vol. 15, no. 2, pp. 131-134, 1977. · Zbl 0351.76007 · doi:10.1016/0020-7225(77)90028-3 |

[38] | S. K. Jena and M. N. Mathur, “Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate,” International Journal of Engineering Science, vol. 19, no. 11, pp. 1431-1439, 1981. · Zbl 0476.76084 · doi:10.1016/0020-7225(81)90040-9 |

[39] | J. Peddieson and R. P. Mcnitt, “Boundary layer theory for a micropolar fluid,” Recent Advances in Engineering Science, vol. 5, pp. 405-426, 1970. |

[40] | S. E. El-Gendi, “Chebyshev solution of differential, integral and integro-differential equations,” Computer Journal, vol. 12, pp. 282-287, 1969. · Zbl 0198.50201 · doi:10.1093/comjnl/12.3.282 |

[41] | Y. Morchoisn, “Pseudo-spectral space-time calculations of incompressible viscous flows,” AIAA Journal, vol. 19, pp. 81-82, 1981. |

[42] | R. Nazar, A. Ishak, and I. Pop, “Unsteady boundary layer flow over a stretching sheet in a micropolar fluid,” International Journal of Mathematical, Physical and Engineering Sciences, vol. 2, pp. 161-168, 2008. · Zbl 1163.76411 |

[43] | A. Ishak, “Thermal boundary layer flow over a stretching sheet inamicropolar fluid with radiation effect,” Meccanica, vol. 45, pp. 367-373, 2010. · Zbl 1258.76022 · doi:10.1007/s11012-009-9257-4 |

[44] | L. J. Grubka and K. M. Bobba, “Heat transfer characteristics of a continuous stretching surface with variable temperature,” Journal of Heat Transfer, vol. 107, no. 1, pp. 248-250, 1985. |

[45] | M. E. Ali, “Heat transfer characteristics of a continuous stretching surface,” Heat Mass Transfer, vol. 29, no. 4, pp. 227-234, 1994. · doi:10.1007/BF01539754 |

[46] | C.-H. Chen, “Laminar mixed convection adjacent to vertical, continuously stretching sheets,” Heat and Mass Transfer, vol. 33, no. 5-6, pp. 471-476, 1998. |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.