×

Solving multi-level multi-objective linear programming problems through fuzzy goal programming approach. (English) Zbl 1195.90077

Summary: Two new algorithms are presented to solve multi-level multi-objective linear programming (ML-MOLP) problems through the fuzzy goal programming (FGP) approach. The membership functions for the defined fuzzy goals of all objective functions at all levels are developed in the model formulation of the problem; so also are the membership functions for vectors of fuzzy goals of the decision variables, controlled by decision makers at the top levels. Then the fuzzy goal programming approach is used to achieve the highest degree of each of the membership goals by minimizing their deviational variables and thereby obtain the most satisfactory solution for all decision makers.The first suggested algorithm groups the membership functions for the defined fuzzy goals of the objective functions at all levels and the decision variables for each level except the lower level of the multi-level problem. The second proposed algorithm lexicographically solves MOLP problems of the ML-MOLP problem by taking into consideration the decisions of the MOLP problems for the upper levels. An illustrative numerical example is given to demonstrate the algorithms.

MSC:

90C29 Multi-objective and goal programming
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
90C05 Linear programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abo-Sinna, M. A., Pareto optimality for bi-level programming problem with fuzzy parameters, J. Operat. Res. Soc. of India (OPSEARCH), 38, 4, 372-393 (2001) · Zbl 1278.90349
[2] Ayed, B., Bi-level linear programming, Comput. Operat. Res., 20, 5, 485-501 (1993) · Zbl 0783.90068
[3] Bialas, W. F.; Karwan, M. H., Two level linear programming, Manage. Sci., 30, 8, 1004-1020 (1984) · Zbl 0559.90053
[4] Pyng, Ue; Lin, Sen-Fon, Fining an efficient solution to linear bi-level programming problem: an efficient approach, J. Global Optim., 8, 295-306 (1996) · Zbl 0859.90099
[5] Abo-Sinna, M. A., A bi-level non-linear multi-objective decision making under fuzziness, J. Operat. Res. Soc. of India (OPSEARCH), 38, 5, 484-495 (2001) · Zbl 1278.90493
[6] Anandalingam, G., A mathematical programming model of the decentralized multi-level systems, J. Operat. Res. Soc., 39, 11, 1021-1033 (1988) · Zbl 0657.90061
[7] Shi, X.; Xia, H., Interactive bi-level multi-objective decision making, J. Operat. Res. Soc., 48, 943-949 (1997) · Zbl 0892.90200
[8] Shi, X.; Xia, H., Model and interactive algorithm of bi-level multi-objective with multiple interconnected decision makers, J. Multicrit. Dec. Anal., 10, 27-34 (2001) · Zbl 0985.90054
[9] Lee, E. S.; Shih, Hsu-shih, Fuzzy and Multi-Level Decision Making An Interactive Computational Approach (2001), Springer Verlag London limited
[10] Osman, M. S.; Abo-Sinna, M. A.; Amer, A. H.; Emam, O. E., A multi-level nonlinear multi-objective decision making under fuzziness, J. Appl. Math. Comput., 153, 239-252 (2004) · Zbl 1049.90032
[11] Luhandjula, M. K., Fuzzy approaches for multiple objective linear fractional optimization, Fuzzy Sets Syst., 13, 11-23 (1984) · Zbl 0546.90094
[12] Abo-Sinna, M. A.; Baky, I. A., Interactive balance space approach for solving bi-level multi-objective programming problems, AMSE-Modeling J., FRANCE, 40, 43-62 (2006), Advances B.
[13] Abo-Sinna, M. A.; Baky, I. A., Interactive balance space approach for solving multi-level multi-objective programming problems, Informat. Sci., 177, 3397-3410 (2007) · Zbl 1278.90350
[14] Abo-Sinna, M. A.; Baky, I. A., A comparison of two bi-level programming methods in multi-objective programming problems applied to the supply-demand interactions in electronic commerce, Scientific Bulletin, Ain Shams University, Faculty Eng., 40, 4, 1189-1213 (2005)
[15] Vicent, L. N.; Calamai, P. H., Bilevel and multilevel programming: a bibliography review, J. Global Optim., 5, 291-306 (1994) · Zbl 0822.90127
[16] Zadeh, L. A., Fuzzy sets, Informat. Control, 8, 338-353 (1965) · Zbl 0139.24606
[17] Zimmermann, H.-J., Fuzzy programming and linear programming with several objective functions, Fuzzy Sets Syst., 1, 45-55 (1978) · Zbl 0364.90065
[18] Mohamed, R. H., The relationship between goal programming and fuzzy programming, Fuzzy Sets Syst., 89, 215-222 (1997)
[20] Pal, B. B.; Moitra, Bhola Nath; Maulik, Ujjwal, A goal programming procedure for fuzzy multiobjective linear fractional programming problem, Fuzzy Sets Syst., 139, 2, 395-405 (2003) · Zbl 1047.90081
[21] Sinha, S., Fuzzy mathematical programming applied to multi-level programming problems, Comput. Operat. Res., 30, 1259-1268 (2003) · Zbl 1036.90077
[22] Lai, Y. J., Hierarchical optimization. A satisfactory solution, Fuzzy Sets Syst., 77, 321-335 (1996) · Zbl 0869.90042
[23] Shih, H. S.; Lai, Y. J.; Lee, E. S., Fuzzy approach for multi-level programming problems, Comput. Operat. Res., 23, 1, 73-91 (1996) · Zbl 0838.90140
[24] Bellman, R. E.; Zadeh, L. A., Decision-making in a fuzzy environment, Manage. Sci., 17, 141-164 (1970) · Zbl 0224.90032
[25] Pal, B. B.; Moitra, B. N., A fuzzy goal programming procedure for solving quadratic bilevel programming problems, Int. J. Intell. Syst., 18, 5, 529-540 (2003) · Zbl 1038.68027
[26] Pramanik, S.; Kumar Roy, T., Fuzzy goal programming approach to multilevel programming problems, Eur. J. Operat. Res., 176, 1151-1166 (2006) · Zbl 1110.90084
[27] Sakawa, M., Fuzzy sets and Interactive Multiobjective Optimization (1993), Plenum Press: Plenum Press New York · Zbl 0842.90070
[28] Sinha, S., Fuzzy programming approach to multi-level programming problems, Fuzzy Sets Syst., 136, 189-202 (2003) · Zbl 1013.90143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.