zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Cryptanalysis and improvement of a block cipher based on multiple chaotic systems. (English) Zbl 1195.94059
Summary: Wang and Yu proposed a block cipher scheme based on dynamic sequences generated by multiple chaotic systems, which overcomes the problem of periodical degradation on random sequences due to computational precision. Their scheme has a feature that a plaintext is encrypted by a keystream created from several one-dimensional chaotic maps. However, this feature results in some weaknesses of the encryption algorithm. We show three kinds of attacks in this paper, through which one can recover the plaintext from a given ciphertext without the secret key. We also present an improvement on their scheme, which prevents the three attacks mentioned above. Security of the enhanced cipher is presented and analyzed, which shows that our improved scheme is secure under the current attacks.

MSC:
94A60Cryptography
WorldCat.org
Full Text: DOI EuDML
References:
[1] R. Matthews, “On the derivation of a “chaotic” encryption algorithm,” Cryptologia, vol. 13, no. 1, pp. 29-42, 1989. · doi:10.1080/0161-118991863745
[2] M. Götz, K. Kelber, and W. Schwarz, “Discrete-time chaotic encryption systems. I. Statistical design approach,” IEEE Transactions on Circuits and Systems I, vol. 44, no. 10, pp. 963-970, 1997. · doi:10.1109/81.633885
[3] E. Alvarez, A. Fernández, P. Garcí, J. Jiménez, and A. Marcano, “New approach to chaotic encryption,” Physics Letters A, vol. 263, no. 4-6, pp. 373-375, 1999.
[4] E. Biham, “Cryptanalysis of the chaotic-map cryptosystem suggested,” in Proceedings of the Workshop on the Theory and Application of of Cryptographic Techniques (EUROCRYPT ’91), vol. 547 of Lecture Notes in Computer Science, pp. 532-534, 1991. · Zbl 0825.94182
[5] T. Stojanovski and L. Kocarev, “Chaos-based random number generators. I. Analysis,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 3, pp. 281-288, 2001. · Zbl 0997.65002 · doi:10.1109/81.915385
[6] T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number generators. II. Practical realization,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 3, pp. 382-385, 2001. · Zbl 0997.65003 · doi:10.1109/81.915396
[7] F. Dachselt, K. Kelber, and W. Schwarz, “Discrete-time chaotic encryption systems-part III: cryptographical analysis,” IEEE Transactions on Circuits and Systems I, vol. 45, no. 9, pp. 983-988, 1998. · doi:10.1109/81.721265
[8] S. Lian, J. Sun, J. Wang, and Z. Wang, “A chaotic stream cipher and the usage in video protection,” Chaos, Solitons and Fractals, vol. 34, no. 3, pp. 851-859, 2007. · Zbl 1140.94357 · doi:10.1016/j.chaos.2006.03.120
[9] D. R. Frey, “Chaotic digital encoding: an approach to secure communication,” IEEE Transactions on Circuits and Systems II, vol. 40, no. 10, pp. 660-666, 1993. · doi:10.1109/82.246168
[10] N. K. Pareek, V. Patidar, and K. K. Sud, “Cryptography using multiple one-dimensional chaotic maps,” Communications in Nonlinear Science and Numerical Simulation, vol. 10, no. 7, pp. 715-723, 2005. · Zbl 1075.68027 · doi:10.1016/j.cnsns.2004.03.006
[11] N. K. Pareek, V. Patidar, and K. K. Sud, “Discrete chaotic cryptography using external key,” Physics Letters A, vol. 309, no. 1-2, pp. 75-82, 2003. · Zbl 1010.68063 · doi:10.1016/S0375-9601(03)00122-1
[12] X. Wang and Q. Yu, “A block encryption algorithm based on dynamic sequences of multiple chaotic systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 2, pp. 574-581, 2009. · Zbl 1221.94067 · doi:10.1016/j.cnsns.2007.10.011
[13] J. Kohl, “The use of encryption in kerberos for network authentication,” in Advances in Cryptology, vol. 435 of Lecture Notes in Computer Science, pp. 35-43, 1990.
[14] Z. H. Liu, “Chaotic time series analysis,” Mathematical Problems in Engineering, vol. 2010, Article ID 720190, 31 pages, 2010. · Zbl 1191.37046 · doi:10.1155/2010/720190
[15] E. G. Bakhoum and C. Toma, “Dynamical aspects of macroscopic and quantum transitions due to coherence function and time series events,” Mathematical Problems in Engineering, vol. 2010, Article ID 428903, 13 pages, 2010. · Zbl 1191.35219 · doi:10.1155/2010/428903 · eudml:225118
[16] C. Cattani and A. Kudreyko, “Application of periodized harmonic wavelets towards solution of eigenvalue problems for integral equations,” Mathematical Problems in Engineering, vol. 2010, Article ID 570136, 8 pages, 2010. · Zbl 1191.65175 · doi:10.1155/2010/570136 · eudml:224035
[17] G. Mattioli, M. Scalia, and C. Cattani, “Analysis of large amplitude pulses in short time intervals: application to neuron interactions,” Mathematical Problems in Engineering, vol. 2010, Article ID 895785, 14 pages, 2010. · Zbl 1189.37099 · doi:10.1155/2010/895785 · eudml:233617
[18] S. Y. Chen, Y. F. Li, and J. Zhang, “Vision processing for realtime 3-D data acquisition based on coded structured light,” IEEE Transactions on Image Processing, vol. 17, no. 2, pp. 167-176, 2008. · doi:10.1109/TIP.2007.914755
[19] S. Y. Chen, Y. F. Li, Q. Guan, and G. Xiao, “Real-time three-dimensional surface measurement by color encoded light projection,” Applied Physics Letters, vol. 89, no. 11, Article ID 111108, 2006. · doi:10.1063/1.2352729
[20] S. Y. Chen and Y. F. Li, “Vision sensor planning for 3-D model acquisition,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 35, no. 5, pp. 894-904, 2005. · doi:10.1109/TSMCB.2005.846907
[21] S. Y. Chen, Y. F. Li, J. Zhang, and W. Wang, Active Sensor Planning for Multiview Vision Tasks, Springer, Berlin, Germany, 2008.
[22] M. Li, “Fractal time series-a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. · Zbl 1191.37002 · doi:10.1155/2010/157264
[23] M. Li and J. Y. Li, “On the predictability of long-range dependent series,” Mathematical Problems in Engineering, vol. 2010, Article ID 397454, 9 pages, 2010. · Zbl 1191.62160
[24] M. Li, “Generation of teletraffic of generalized Cauchy type,” Physica Scripta, vol. 81, no. 2, 10 pages, 2010. · Zbl 1191.90013
[25] M. Li, W. S. Chen, and L. Han, “Correlation matching method of the weak stationarity test of LRD traffic,” Telecommunication Systems, vol. 43, no. 3-4, pp. 181-195, 2010. · doi:10.1007/s11235-009-9206-5
[26] M. Li and S. C. Lim, “Power spectrum of generalized Cauchy process,” Telecommunication Systems, vol. 43, no. 3-4, pp. 219-222, 2010. · doi:10.1007/s11235-009-9209-2
[27] M. Li and S. C. Lim, “A rigorous derivation of power spectrum of fractional Gaussian noise,” Fluctuation and Noise Letters, vol. 6, no. 4, pp. C33-C36, 2006. · doi:10.1142/S0219477506003604
[28] M. Li and W. Zhao, “Representation of a stochastic traffic bound,” Parallel and Distributed Systems, vol. 21, no. 9, pp. 1368-1372, 2010.