[1] |
R. Matthews, “On the derivation of a “chaotic” encryption algorithm,” Cryptologia, vol. 13, no. 1, pp. 29-42, 1989.
· doi:10.1080/0161-118991863745 |

[2] |
M. Götz, K. Kelber, and W. Schwarz, “Discrete-time chaotic encryption systems. I. Statistical design approach,” IEEE Transactions on Circuits and Systems I, vol. 44, no. 10, pp. 963-970, 1997.
· doi:10.1109/81.633885 |

[3] |
E. Alvarez, A. Fernández, P. Garcí, J. Jiménez, and A. Marcano, “New approach to chaotic encryption,” Physics Letters A, vol. 263, no. 4-6, pp. 373-375, 1999. |

[4] |
E. Biham, “Cryptanalysis of the chaotic-map cryptosystem suggested,” in Proceedings of the Workshop on the Theory and Application of of Cryptographic Techniques (EUROCRYPT ’91), vol. 547 of Lecture Notes in Computer Science, pp. 532-534, 1991. · Zbl 0825.94182 |

[5] |
T. Stojanovski and L. Kocarev, “Chaos-based random number generators. I. Analysis,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 3, pp. 281-288, 2001. · Zbl 0997.65002
· doi:10.1109/81.915385 |

[6] |
T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number generators. II. Practical realization,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 3, pp. 382-385, 2001. · Zbl 0997.65003
· doi:10.1109/81.915396 |

[7] |
F. Dachselt, K. Kelber, and W. Schwarz, “Discrete-time chaotic encryption systems-part III: cryptographical analysis,” IEEE Transactions on Circuits and Systems I, vol. 45, no. 9, pp. 983-988, 1998.
· doi:10.1109/81.721265 |

[8] |
S. Lian, J. Sun, J. Wang, and Z. Wang, “A chaotic stream cipher and the usage in video protection,” Chaos, Solitons and Fractals, vol. 34, no. 3, pp. 851-859, 2007. · Zbl 1140.94357
· doi:10.1016/j.chaos.2006.03.120 |

[9] |
D. R. Frey, “Chaotic digital encoding: an approach to secure communication,” IEEE Transactions on Circuits and Systems II, vol. 40, no. 10, pp. 660-666, 1993.
· doi:10.1109/82.246168 |

[10] |
N. K. Pareek, V. Patidar, and K. K. Sud, “Cryptography using multiple one-dimensional chaotic maps,” Communications in Nonlinear Science and Numerical Simulation, vol. 10, no. 7, pp. 715-723, 2005. · Zbl 1075.68027
· doi:10.1016/j.cnsns.2004.03.006 |

[11] |
N. K. Pareek, V. Patidar, and K. K. Sud, “Discrete chaotic cryptography using external key,” Physics Letters A, vol. 309, no. 1-2, pp. 75-82, 2003. · Zbl 1010.68063
· doi:10.1016/S0375-9601(03)00122-1 |

[12] |
X. Wang and Q. Yu, “A block encryption algorithm based on dynamic sequences of multiple chaotic systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 2, pp. 574-581, 2009. · Zbl 1221.94067
· doi:10.1016/j.cnsns.2007.10.011 |

[13] |
J. Kohl, “The use of encryption in kerberos for network authentication,” in Advances in Cryptology, vol. 435 of Lecture Notes in Computer Science, pp. 35-43, 1990. |

[14] |
Z. H. Liu, “Chaotic time series analysis,” Mathematical Problems in Engineering, vol. 2010, Article ID 720190, 31 pages, 2010. · Zbl 1191.37046
· doi:10.1155/2010/720190 |

[15] |
E. G. Bakhoum and C. Toma, “Dynamical aspects of macroscopic and quantum transitions due to coherence function and time series events,” Mathematical Problems in Engineering, vol. 2010, Article ID 428903, 13 pages, 2010. · Zbl 1191.35219
· doi:10.1155/2010/428903
· eudml:225118 |

[16] |
C. Cattani and A. Kudreyko, “Application of periodized harmonic wavelets towards solution of eigenvalue problems for integral equations,” Mathematical Problems in Engineering, vol. 2010, Article ID 570136, 8 pages, 2010. · Zbl 1191.65175
· doi:10.1155/2010/570136
· eudml:224035 |

[17] |
G. Mattioli, M. Scalia, and C. Cattani, “Analysis of large amplitude pulses in short time intervals: application to neuron interactions,” Mathematical Problems in Engineering, vol. 2010, Article ID 895785, 14 pages, 2010. · Zbl 1189.37099
· doi:10.1155/2010/895785
· eudml:233617 |

[18] |
S. Y. Chen, Y. F. Li, and J. Zhang, “Vision processing for realtime 3-D data acquisition based on coded structured light,” IEEE Transactions on Image Processing, vol. 17, no. 2, pp. 167-176, 2008.
· doi:10.1109/TIP.2007.914755 |

[19] |
S. Y. Chen, Y. F. Li, Q. Guan, and G. Xiao, “Real-time three-dimensional surface measurement by color encoded light projection,” Applied Physics Letters, vol. 89, no. 11, Article ID 111108, 2006.
· doi:10.1063/1.2352729 |

[20] |
S. Y. Chen and Y. F. Li, “Vision sensor planning for 3-D model acquisition,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 35, no. 5, pp. 894-904, 2005.
· doi:10.1109/TSMCB.2005.846907 |

[21] |
S. Y. Chen, Y. F. Li, J. Zhang, and W. Wang, Active Sensor Planning for Multiview Vision Tasks, Springer, Berlin, Germany, 2008. |

[22] |
M. Li, “Fractal time series-a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. · Zbl 1191.37002
· doi:10.1155/2010/157264 |

[23] |
M. Li and J. Y. Li, “On the predictability of long-range dependent series,” Mathematical Problems in Engineering, vol. 2010, Article ID 397454, 9 pages, 2010. · Zbl 1191.62160 |

[24] |
M. Li, “Generation of teletraffic of generalized Cauchy type,” Physica Scripta, vol. 81, no. 2, 10 pages, 2010. · Zbl 1191.90013 |

[25] |
M. Li, W. S. Chen, and L. Han, “Correlation matching method of the weak stationarity test of LRD traffic,” Telecommunication Systems, vol. 43, no. 3-4, pp. 181-195, 2010.
· doi:10.1007/s11235-009-9206-5 |

[26] |
M. Li and S. C. Lim, “Power spectrum of generalized Cauchy process,” Telecommunication Systems, vol. 43, no. 3-4, pp. 219-222, 2010.
· doi:10.1007/s11235-009-9209-2 |

[27] |
M. Li and S. C. Lim, “A rigorous derivation of power spectrum of fractional Gaussian noise,” Fluctuation and Noise Letters, vol. 6, no. 4, pp. C33-C36, 2006.
· doi:10.1142/S0219477506003604 |

[28] |
M. Li and W. Zhao, “Representation of a stochastic traffic bound,” Parallel and Distributed Systems, vol. 21, no. 9, pp. 1368-1372, 2010. |