zbMATH — the first resource for mathematics

On the integral dilatations of the “fractional part” function. (Sur les dilatations entières de la fonction “partie fractionnaire”.) (French. English summary) Zbl 1196.11117
Summary: With \(e_n(t) =\{t/n\}\) and \(\mathcal{H}: = L^2(0,+\infty; t^{-2}\,dt)\), we prove \[ \frac{6}{5} + O(n^{-1}) \leq n^2 \cdot \text{dist}_{\mathcal{H}}^2 \bigl (e_n, \text{Vect}(e_1, \dots, e_{n-1})\bigr) \leq \frac{3}{4} \log n + O(1). \]
See the article of L. Báez-Duarte, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 14, No. 1, 5–11 (2003; Zbl 1097.11041).
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
Full Text: DOI Euclid
[1] L. Báez-Duarte, A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis , Rend. Mat. Acc. Lincei (9), 14 (2003), 5–11. · Zbl 1097.11041
[2] L. Báez-Duarte, M. Balazard, B. Landreau et E. Saias, Notes sur la fonction \(\zeta\) de Riemann, 3 , Advances in Mathematics 149 (2000), 130–144. · Zbl 1008.11032
[3] L. Báez-Duarte, M. Balazard, B. Landreau et E. Saias, Étude de l’autocorrélation multiplicative de la fonction \og partie fractionnaire\fg , Ramanujan Journal 9 (2005), 215–240. · Zbl 1173.11343
[4] V. Vasyunin, On a biorthogonal system associated with the Riemann hypothesis , St-Petersburg Math. J. 7 (1996), 405–419.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.