On the group of units of number fields of degree 2 and 4. (Sur le groupe des unités de corps de nombres de degré 2 et 4.) (French. English summary) Zbl 1196.11150

Summary: We give under certain hypotheses, a fundamental system of units of the field \(K=\mathbb Q(\omega)\) and its quadratic subfield, where \(\omega\) is a root of the polynomial \(f(X)=X^4 +d^{-2} M_6 X^2 -M_4\), with \(M_6 =D^6 +6D^4 d+9D^2 d^2 +2d^3\), \(M_4 =D^4 +4D^2 d+2d^2\), \(d, D\in\mathbb N\), \(d\mid D\).


11R27 Units and factorization
11R11 Quadratic extensions
11R16 Cubic and quartic extensions
11R04 Algebraic numbers; rings of algebraic integers
Full Text: DOI EuDML


[1] L. Bernstein, Fundamental units and cycles in period of real quadratic number fields, Part I. Pac. J. Math. 68 No. 1 (1976), 37-61 ; and J. Number Theory 8 (1976), 446-491. · Zbl 0335.10010
[2] L. Bernstein, Fundamental units and cycles in period of real quadratic number fields. Part II, Pac. J. Math. 68 No. 1 (1976), 63-78. · Zbl 0335.10011
[3] N. Bourbaki, Algèbre, chapitre 5, corps commutatifs \(, (2^{eme}\) édition). Hermann, Paris, 1959.
[4] T. W. Hungerford, Algebra. Holt, Rinehart and Winston, Inc., New York, 1974. · Zbl 0293.12001
[5] C. Levesque, Truncated units. J. Number Theory 41 No. 1 (1992), 48-68. · Zbl 0759.11038
[6] W. Ljunggren, Über die Lösung einiger unbestimmten Gleichungen vierten Grades. Avh. Norske Vid.-Akad. Oslo, I. Mat.-Nat. Kl. (1935), 1-35. · Zbl 0011.14701
[7] H.-J. Stender, “Verstummelte” Grundeinheiten für biquadratische und bikubische Zahlkörper. Math. Ann. 232 (1982), 55-64. · Zbl 0372.12009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.