×

Convergence of metric graphs and energy forms. (English) Zbl 1196.31004

Summary: We begin with clarifying spaces obtained as limits of sequences of finite networks from an analytic point of view, and we discuss convergence of finite networks with respect to the topology of both the Gromov-Hausdorff distance and the variational convergence, called \(\Gamma\)-convergence. Relevantly to convergence of finite networks to infinite ones, we investigate the space of harmonic functions of finite Dirichlet sums on infinite networks and their Kuramochi compactifications.

MSC:

31C20 Discrete potential theory
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404. JSTOR: · Zbl 0037.20701 · doi:10.2307/1990404
[2] Bekka, M.E.B. and Valette, A.: Group cohomology, harmonic functions and the first \(L^2\)-Betti number. Potential Anal. 6 (1997), 313-326. · Zbl 0882.22013 · doi:10.1023/A:1017974406074
[3] Benjamini, I. and Schramm, O.: Harmonic functions on planar and almost planar graphs and manifolds, via circle packings. Invent. Math. 126 (1996), 565-587. · Zbl 0868.31008 · doi:10.1007/s002220050109
[4] Benjamini, I. and Schramm, O.: Random walks and harmonic functions on infinite planar graphs using square tilings. Ann. Probab. 24 (1996), 1219-1238. · Zbl 0862.60053 · doi:10.1214/aop/1065725179
[5] Bérard, P., Besson, G. and Gallot, S.: On embedding Riemannian manifolds in a Hilbert space using their heat kernels . Prépublication de l’Institut Fourier, no. 109, 1988.
[6] Bérard, P., Besson, G. and Gallot, S.: Embedding Riemannian manifolds by their heat kernels. Geom. Funct. Anal. 4 (1994), 373-398. · Zbl 0806.53044 · doi:10.1007/BF01896401
[7] Bourdon, M. and Pajot, H.: Cohomologie \(\ell_p\) et produits amalgamés. Geom. Dedicata 107 (2004), 85-98. · Zbl 1124.20025 · doi:10.1023/B:GEOM.0000049100.08557.2b
[8] Bourdon, M., Martin, F. and Valette, A.: Vanishing and non-vanishing for the first \(L^p\)-cohomology of groups. Comment. Math. Helv. 80 (2005), 377-389. · Zbl 1139.20045 · doi:10.4171/CMH/18
[9] Burago, D., Burago, Y. and Ivanov, S.: A Course in Metric Geometry . Graduate Studies in Mathematics 33 . American Mathematical Society, Providence, RI, 2001. · Zbl 0981.51016
[10] Cartier, P.: Fonctions harmonique sur un arbre. In Symposia Mathematica, vol. ix (Convegno di Calcolo delle Probabilità, INDAM, Rome, 1971), 203-270. Academic Press, London, 1972. · Zbl 0283.31005
[11] Cartwright, D.I. and Woess, W.: Infinite graphs with nonconstant Dirichlet finite harmonic functions. SIAM J. Discrete Math. 5 (1992), 380-385. · Zbl 0752.31005 · doi:10.1137/0405029
[12] Cartwright, D.I., Soardi, P.M. and Woess, W.: Martin and end compactifications for non-locally finite graphs. Trans. Amer. Math. Soc. 338 (1993), 679-693. JSTOR: · Zbl 0777.60074 · doi:10.2307/2154423
[13] Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R. and Tiwari, P.: The electrical resistance of a graph captures its commute and cover times. Comput. Complexity 6 (1996/1997), 312-340. · Zbl 0905.60049 · doi:10.1007/BF01270385
[14] Colin de Verdière, Y., Pan, Y. and Ycart, B.: Singular limits of Schrödinger operators and Markov processes. J. Operator Theory 41 (1999), 151-173. · Zbl 0990.47013
[15] Coornaert, M., Delzant, T. and Papadopoulos, A.: Géométrie et théorie des groupes . Lecture Notes in Mathematics 1441 . Springer-Verlag, Berlin, 1990. · Zbl 0727.20018
[16] Dal Maso, G.: An introduction to \(\Gamma\)-convergence . Progress in Nonlinear Differential Equations and Their Applications 8 . Birkäuser, Boston, 1993. · Zbl 0816.49001
[17] Davidoff, G., Sarnak, P. and Valette, A.: Elementary number theory, group theory, and Ramanujan graphs . London Mathematical Society Student Texts 55 . Cambridge University Press, Cambridge, 2003. · Zbl 1032.11001
[18] Doob, J.L.: Boundary properties for functions with finite Dirichlet integrals. Ann. Inst. Fourier (Grenoble) 12 (1962), 573-621. · Zbl 0121.08604 · doi:10.5802/aif.126
[19] Elek, G.: The \(\ell_p\)-cohomology and the conformal dimension of hyperbolic cones. Geom. Dedicata 68 (1997), 263-279. · Zbl 0899.53035 · doi:10.1023/A:1004920322337
[20] Foster, R.M.: The average impedance of an electrical network. In Contributions to Applied Mechanics (Reissner Anniversary Volume) , 333-340. J.W. Edwards, Ann Arbor, Michigan, 1948. · Zbl 0040.41801
[21] Fukushima, M., Ōshima, Y. and Takeda, M.: Dirichlet forms and symmetric Markov processes . De Gruyter Studies in Mathematics 19 . Walter de Gruyter, Berlin-New York, 1994. · Zbl 0838.31001
[22] Grigorchuk, R.I. and Żuk, A.: On the asymptotic spectrum of random walks on infinite families of graphs. In Random walks and discrete potential theory (Cortona, 1997) , 188-204. Sympos. Math. 39 . Cambridge Univ. Press, Cambridge, 1999. · Zbl 0957.60044
[23] Gromov, M.: Hyperbolic Groups. In Essays in group theory , 75-263. Math. Sci. Res. Inst. Publ. 8 . Springer, New York, 1987. · Zbl 0634.20015
[24] Hattori, T. and Kasue, A.: Dirichlet finite harmonic functions and points at infinity of graphs and manifolds. Proc. Japan Acad. Ser. A Math Sci. 83 , 129-134. · Zbl 1145.53310 · doi:10.3792/pjaa.83.129
[25] Hattori, T. and Kasue, A.: Functions of finite Dirichlet sums and compactifications of infinite graphs. In Probabilistic Approach to Geometry , 141-153. Advanced Studies in Pure Mathematics 57 . Mathematical Society of Japan, Tokyo, 2010. · Zbl 1203.53033
[26] Kasue, A.: Convergence of Riemannian manifolds and Laplace operators. I. Ann. Inst. Fourier (Grenoble) 52 (2002), 1219-1257. · Zbl 1040.53053 · doi:10.5802/aif.1916
[27] Kasue, A.: Convergence of Riemannian manifolds and Laplace operators. II. Potential Anal. 24 (2006), 137-194. · Zbl 1099.53033 · doi:10.1007/s11118-005-8568-x
[28] Kasue, A.: Variational convergence of finite networks. Interdiscip. Inform. Sci. 12 (2006), 57-70. · Zbl 1096.53025 · doi:10.4036/iis.2006.57
[29] Kasue, A. and Kumura, H.: Spectral convergence of Riemannian manifolds. Tôhoku Math. J. 46 (1994), 147-179. · Zbl 0814.53035 · doi:10.2748/tmj/1178225756
[30] Kasue, A. and Kumura, H.: Spectral convergence of Riemannian manifolds. II. Tôhoku Math. J. 48 (1996), 71-120. · Zbl 0853.58100 · doi:10.2748/tmj/1178225413
[31] Kayano, T. and Yamasaki, M.: Some properties of Royden boundary of an infinite network. Mem. Fac. Sci. Shimane Univ. 22 (1988), 11-19. · Zbl 0688.94005
[32] Kigami, J.: Analysis on fractals . Cambridge Tracts in Mathematics 143 . Cambridge University Press, Cambridge, 2001. · Zbl 0998.28004
[33] Kuwae, K. and Shioya, T.: Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry. Comm. Anal. Geom. 11 (2003), 599-673. · Zbl 1092.53026 · doi:10.4310/CAG.2003.v11.n4.a1
[34] Maeda, F.-Y.: Normal derivatives on an ideal boundary. J. Sci. Hiroshima Univ. Ser. A-I Math. 28 (1964), 113-131. · Zbl 0192.20402
[35] Murakami, A.: Kuramochi boundaries of infinite networks and extremal problems. Hiroshima Math. J. 24 (1994), 243-256. · Zbl 0815.31005
[36] Murakami, A. and Yamasaki, M.: An introduction of Kuramochi boundary of an infinite network. Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 30 (1997), 57-89. · Zbl 0880.31005
[37] Soardi, P.M.: Potential theory on infinite networks . Lecture Notes in Mathematics 1590 . Springer-Verlarg, Berlin, 1994. · Zbl 0818.31001 · doi:10.1007/BFb0073995
[38] Tetali, P.: Random walks and effective resistance of networks. J. Theoret. Probab. 4 (1991), no. 1, 101-109. · Zbl 0722.60070 · doi:10.1007/BF01046996
[39] Urakawa, H.: Heat kernel and Green kernel comparison theorems for infinite graphs. J. Funct. Anal. 146 (1997), 206-235. · Zbl 0870.05070 · doi:10.1006/jfan.1996.3030
[40] Yamasaki, M.: Discrete Dirichlet potentials on an infinite network. RIMS Kokyuroku 610 (1987), 51-66. · Zbl 0657.31018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.