Yulmukhametov, R. S. Spectral synthesis in the kernel of a convolution operator on weighted spaces. (English. Russian original) Zbl 1196.32007 St. Petersbg. Math. J. 21, No. 2, 353-363 (2010); translation from Algebra Anal. 21, No. 2, 264-279 (2009). Summary: Weighted spaces of analytic functions on a bounded convex domain \( D\subset \mathbb {C}^p\) are treated. Let \( U =\{ u_n\} _{n=1}^{\infty }\) be a monotone decreasing sequence of convex functions on \( D\) such that \( u_n(z)\longrightarrow \infty \) as dist\((z,\partial D) \longrightarrow 0\). The symbol \( H(D,U)\) stands for the space of all \( f\in H(D)\) satisfying \( | f(z)| \exp (-u_n(z))\longrightarrow 0\) as dist\((z,\partial D)\longrightarrow 0\), for all \( n \in \mathbb {N}\). This space is endowed with a locally convex topology with the aid of the seminorms \( p_n(f) = \sup_{z\in D}| f(z)|\exp (-u_n(z)), n=1, 2, \dots\). Clearly, every functional \( S\in H^*(D)\) is a continuous linear functional on \( H(D,U)\), and the corresponding convolution operator \( M_S : f\longrightarrow S_w(f(z+w))\) acts on \( H(D,U)\). All elementary solutions of the equation \[ (*)\qquad M_S[f]=0, \] i.e., all solutions of the form \( z^{\alpha }e^{\langle a,z\rangle}, \alpha \in \mathbb {Z}_+^p, a \in \mathbb {C}^p\), belong to \( H(D,U)\). It is shown that the system \( E(S)\) of elementary solutions is dense in the space of solutions of equation \((*)\) that belong to \( H(D,U)\). MSC: 32A50 Harmonic analysis of several complex variables 42A85 Convolution, factorization for one variable harmonic analysis 47B40 Spectral operators, decomposable operators, well-bounded operators, etc. Keywords:weighted spaces of analytic functions; convolution operator; spectral synthesis × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Leon Ehrenpreis, Fourier analysis in several complex variables, Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience Publishers A Division of John Wiley & Sons, New York-London-Sydney, 1970. · Zbl 0195.10401 [2] I. F. Krasičkov-Ternovskiĭ, A homogeneous convolution type equation on convex domains, Dokl. Akad. Nauk SSSR 197 (1971), 29 – 31 (Russian). [3] Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, Grenoble 6 (1955 – 1956), 271 – 355 (French). · Zbl 0071.09002 [4] Leon Ehrenpreis, Mean periodic functions. I. Varieties whose annihilator ideals are principal, Amer. J. Math. 77 (1955), 293 – 328. · Zbl 0068.31702 · doi:10.2307/2372533 [5] Уравнения свертки в многомерных пространствах, ”Наука”, Мосцощ, 1982 (Руссиан). · Zbl 0582.47041 [6] R. S. Yulmukhametov, Homogeneous convolution equations, Dokl. Akad. Nauk SSSR 316 (1991), no. 2, 312 – 315 (Russian); English transl., Soviet Math. Dokl. 43 (1991), no. 1, 101 – 103. · Zbl 0753.45004 [7] O. V. Epifanov, Duality of a pair of spaces of analytic functions of bounded growth, Dokl. Akad. Nauk SSSR 319 (1991), no. 6, 1297 – 1300 (Russian); English transl., Soviet Math. Dokl. 44 (1992), no. 1, 314 – 317. · Zbl 0776.32005 [8] N. F. Abuzyarova and R. S. Yulmukhametov, Dual spaces of weighted spaces of analytic functions, Sibirsk. Mat. Zh. 42 (2001), no. 1, 3 – 17, i (Russian, with Russian summary); English transl., Siberian Math. J. 42 (2001), no. 1, 1 – 14. · Zbl 0976.46011 · doi:10.1023/A:1004812706564 [9] Alexandre Grothendieck, Sur les espaces (\?) et (\?\?), Summa Brasil. Math. 3 (1954), 57 – 123 (French). · Zbl 0058.09803 [10] A. S. Krivosheev and V. V. Napalkov, Complex analysis and convolution operators, Uspekhi Mat. Nauk 47 (1992), no. 6(288), 3 – 58 (Russian); English transl., Russian Math. Surveys 47 (1992), no. 6, 1 – 56. · Zbl 0801.46051 · doi:10.1070/RM1992v047n06ABEH000954 [11] Nessim Sibony, Approximation polynomiale pondérée dans un domaine d’holomorphie de \?\(^{n}\), Ann. Inst. Fourier (Grenoble) 26 (1976), no. 2, x, 71 – 99. · Zbl 0324.32014 [12] Введение в теорию целых функций многих переменных., Издат. ”Наука”, Мосцощ, 1971 (Руссиан). Л. И. Ронкин, Интродуцтион то тхе тхеоры оф ентире фунцтионс оф северал вариаблес, Америцан Матхематицал Социеты, Провиденце, Р.И., 1974. Транслатед фром тхе Руссиан бы Исраел Програм фор Сциентифиц Транслатионс; Транслатионс оф Матхематицал Монограпхс, Вол. 44. · Zbl 0286.32004 [13] I. F. Krasičkov-Ternovskiĭ, Estimates for a subharmonic difference of subharmonic functions. I, Mat. Sb. (N.S.) 102(144) (1977), no. 2, 216 – 247, 326 (Russian). [14] Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. · Zbl 0685.32001 [15] R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. · Zbl 0193.18401 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.