zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Extended Jacobian elliptic function algorithm with symbolic computation to construct new doubly-periodic solutions of nonlinear differential equations. (English) Zbl 1196.33017
Summary: With the aid of computerized symbolic computation, the extended Jacobian elliptic function expansion method and its algorithm are presented by using some relations among ten Jacobian elliptic functions and are very powerful to construct more new exact doubly-periodic solutions of nonlinear differential equations in mathematical physics. The new $(2+1)$-dimensional complex nonlinear evolution equations is chosen to illustrate our algorithm such that sixteen families of new doubly-periodic solutions are obtained. When the modulus $m\rightarrow 1$ or 0, these doubly-periodic solutions degenerate as solitonic solutions including bright solitons, dark solitons, new solitons as well as trigonometric function solutions.

33E05Elliptic functions and integrals
33F05Numerical approximation and evaluation of special functions
35B10Periodic solutions of PDE
35Q53KdV-like (Korteweg-de Vries) equations
37K40Soliton theory, asymptotic behavior of solutions
Full Text: DOI
[1] Ablowitz, M. J.; Clarkson, P. A.: Soliton. (1991)
[2] Gardner, C. S.: Phys. rev. Lett.. 19, 1095 (1976)
[3] Miura, M. R.: Bäcklund transformation. (1978)
[4] Yan, Z. Y.; Zhang, H. Q.: Acta phys. Sinica. 8, 889 (1999)
[5] Hirota, R.: Phys. rev. Lett.. 27, 1192 (1971)
[6] Malfliet, W.: Amer. J. Phys.. 60, 659 (1992)
[7] Yan, C. T.: Phys. lett. A. 224, 77 (1996)
[8] Yan, Z. Y.; Zhang, H. Q.: Phys. lett. A. 252, 291 (1999)
[9] Yan, Z. Y.: Acta phys. Sinica. 48, 1 (1999)
[10] Yan, Z. Y.; Zhang, H. Q.: Appl. math. Mech.. 21, 382 (2000)
[11] Wang, M. L.: Phys. lett. A. 216, 67 (1996)
[12] Yan, Z. Y.; Zhang, H. Q.: J. phys. A. 34, 1785 (2001)
[13] Yan, Z. Y.; Zhang, H. Q.: Phys. lett. A. 285, 355 (2001)
[14] Porubov, A. V.: Phys. lett. A. 221, 391 (1996)
[15] Porubov, A. V.; Velarde, M. G.: J. math. Phys.. 40, 884 (1999)
[16] Chow, K. W.: J. math. Phys.. 36, 4125 (1995)
[17] Liu, S. K.: Phys. lett. A. 290, 72 (2001)
[18] Kosto, N. A.; Uzunov, I. M.: Opt. commun.. 89, 389 (1992)
[19] Patrick, D. V.: Elliptic function and elliptic curves. (1973) · Zbl 0261.33001
[20] Chamdrasekharan, K.: Elliptic functions. (1985)
[21] Maccari, A.: J. math. Phys.. 37, 6207 (1996)
[22] Porsezian, K.: J. math. Phys.. 38, 4675 (1997)
[23] Z.Y. Yan, submitted
[24] Z.Y. Yan, Commun. Theor. Phys., accepted for publication